Skip to main content

Bioinformatics Tools in Clinical Genomics

  • Chapter
  • First Online:
Genomic Applications in Pathology

Abstract

The field of DNA sequencing experienced a transformational shift beginning in 2005 with the introduction of the first high-throughput, massively parallel DNA sequencing platform that ushered in the era of “next-generation sequencing.” Initially, next-generation sequencing (NGS) platforms generated millions of bases per instrument run which steadily progressed to the now routine output of billions of bases. These unprecedented data volumes have driven a renaissance in bioinformatics research and development resulting in a proliferation of open-source and commercial software algorithms to support the computational processing, analysis, and interpretation of NGS results. These efforts have facilitated a broad dissemination of NGS into every facet of biomedical research and into a growing list of clinical diagnostic applications from targeted multigene panels to whole-genome sequencing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BAM:

Binary Alignment Mapping file format

BWA:

Burrows-Wheeler aligner

BWT:

Burrows-Wheeler transform

GATK:

Genome Analysis Tool Kit

HGMD:

Human Gene Mutation Database

IGV:

Integrative Genomics Viewer

NGS:

next-generation sequencing

OMIM:

Online Mendelian Inheritance in Man

TVC:

Torrent Variant Caller

VCF:

Variant Call File format

VUS:

variant of uncertain significance

WGS:

whole-genome sequencing

References

  1. NHGRI Sequencing Costs. 2013. http://www.genome.gov/sequencingcosts/. Accessed 20 Feb 2013.

  2. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–44. https://doi.org/10.1038/nature14539.

    Article  CAS  PubMed  Google Scholar 

  3. Kircher M, Stenzel U, Kelso J. Improved base calling for the Illumina Genome Analyzer using machine learning strategies. Genome Biol. 2009;10(8):R83. https://doi.org/10.1186/gb-2009-10-8-r83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhou J, Troyanskaya OG. Predicting effects of noncoding variants with deep learning-based sequence model. Nat Methods. 2015;12(10):931–4. https://doi.org/10.1038/nmeth.3547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hogeweg P. The roots of bioinformatics in theoretical biology. PLoS Comput Biol. 2011;7(3):e1002021. https://doi.org/10.1371/journal.pcbi.1002021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Huerta M, Haseltine F, Liu Y, Downing G, Seto B. NIH Working Definition of Bioinformatics and Computational Biology, The Biomedical Information Science and Technology Initiative Consortium (BISTIC) Definition Committee of National Institutes of Health (NIH); 2000.

    Google Scholar 

  7. Bioinformatics.org wiki. http://www.bioinformatics.org/wiki/Bioinformatics. Accessed 24 Feb 2013.

  8. Moorthie S, Hall A, Wright CF. Informatics and clinical genome sequencing: opening the black box. Genet Med. 2013;15(3):165–71. https://doi.org/10.1038/gim.2012.116.

    Article  PubMed  Google Scholar 

  9. Mardis ER. A decade's perspective on DNA sequencing technology. Nature. 2011;470(7333):198–203. https://doi.org/10.1038/nature09796.

    Article  CAS  PubMed  Google Scholar 

  10. Coonrod EM, Durtschi JD, Margraf RL, Voelkerding KV. Developing genome and exome sequencing for candidate gene identification in inherited disorders: an integrated technical and bioinformatics approach. Arch Pathol Lab Med. 2013;137(3):415–33. https://doi.org/10.5858/arpa.2012-0107-RA.

    Article  CAS  PubMed  Google Scholar 

  11. SEQanswers. http://seqanswers.com/. Accessed 12 Feb 2013.

  12. Biostar - Bioinformatics Explained. http://www.biostars.org/. Accessed 12 Feb 2013.

  13. BioIT-World. http://www.bio-itworld.com/. Accessed 12 Feb 2013.

  14. Galaxy NGS server. https://main.g2.bx.psu.edu/. Accessed 12 Feb 2013.

  15. NHGRI Short Course on NGS data. http://www.soph.uab.edu/ssg/courses/nhgri_r25. Accessed 12 Feb 2013.

  16. AMIA 10x10 Courses. http://www.amia.org/education/10x10-courses. Accessed 12 Feb 2013.

  17. Ledergerber C, Dessimoz C. Base-calling for next-generation sequencing platforms. Brief Bioinform. 2011;12(5):489–97. https://doi.org/10.1093/bib/bbq077.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ewing B, Hillier L, Wendl MC, Green P. Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res. 1998;8(3):175–85.

    Article  CAS  PubMed  Google Scholar 

  19. Ewing B, Green P. Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res. 1998;8(3):186–94.

    Article  CAS  PubMed  Google Scholar 

  20. Ensembl. http://www.ensembl.org/Homo_sapiens/Info/Index. Accessed 30 May 2017.

  21. NCBI Reference genome: Homo sapiens. https://www.ncbi.nlm.nih.gov/genome/?term=homo+sapiens. Accessed 30 May 2017.

  22. UCSC Genome Bioinformatics. http://hgdownload.cse.ucsc.edu/downloads.html#human. Accessed 30 May 2017.

  23. Burrows-Wheeler Aligner (BWA). http://bio-bwa.sourceforge.net. Accessed 15 Jan 2013.

  24. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25(14):1754–60. doi:btp324 [pii]. https://doi.org/10.1093/bioinformatics/btp324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics. 2010;26(5):589–95. doi:btp698 [pii]. https://doi.org/10.1093/bioinformatics/btp698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Novoalign. http://www.novocraft.com/main/index.php. Accessed 4 Mar 2013.

  27. Li H, Homer N. A survey of sequence alignment algorithms for next-generation sequencing. Brief Bioinform. 2010;11(5):473–83. doi:bbq015 [pii]. https://doi.org/10.1093/bib/bbq015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Genome Analysis Toolkit (GATK). http://www.broadinstitute.org/gatk/. Accessed 4 Mar 2013.

  29. SAMtools. http://samtools.sourceforge.net. Accessed 4 Mar 2013.

  30. Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP. Integrative genomics viewer. Nat Biotechnol. 2011;29(1):24–6. doi:nbt.1754 [pii]. https://doi.org/10.1038/nbt.1754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Integrative Genomics Viewer. http://software.broadinstitute.org/software/igv/. Accessed 22 June 2017.

  32. Brockman W, Alvarez P, Young S, Garber M, Giannoukos G, Lee WL, Russ C, Lander ES, Nusbaum C, Jaffe DB. Quality scores and SNP detection in sequencing-by-synthesis systems. Genome Res. 2008;18(5):763–70. doi:gr.070227.107 [pii]. https://doi.org/10.1101/gr.070227.107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dohm JC, Lottaz C, Borodina T, Himmelbauer H. Substantial biases in ultra-short read data sets from high-throughput DNA sequencing. Nucleic Acids Res. 2008;36(16):e105. doi:gkn425 [pii]. https://doi.org/10.1093/nar/gkn425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ajay SS, Parker SC, Abaan HO, Fajardo KV, Margulies EH. Accurate and comprehensive sequencing of personal genomes. Genome Res. 2011;21(9):1498–505. doi:gr.123638.111 [pii]. https://doi.org/10.1101/gr.123638.111.

    Article  PubMed  PubMed Central  Google Scholar 

  35. de Leng WW, Gadellaa-van Hooijdonk CG, Barendregt-Smouter FA, Koudijs MJ, Nijman I, Hinrichs JW, Cuppen E, van Lieshout S, Loberg RD, de Jonge M, Voest EE, de Weger RA, Steeghs N, Langenberg MH, Sleijfer S, Willems SM, Lolkema MP. Targeted next generation sequencing as a reliable diagnostic assay for the detection of somatic mutations in tumours using minimal DNA amounts from formalin fixed paraffin embedded material. PLoS One. 2016;11(2):e0149405. https://doi.org/10.1371/journal.pone.0149405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Marchetti A, Del Grammastro M, Filice G, Felicioni L, Rossi G, Graziano P, Sartori G, Leone A, Malatesta S, Iacono M, Guetti L, Viola P, Mucilli F, Cuccurullo F, Buttitta F. Complex mutations & subpopulations of deletions at exon 19 of EGFR in NSCLC revealed by next generation sequencing: potential clinical implications. PLoS One. 2012;7(7):e42164. doi:PONE-D-12-12796 [pii]. https://doi.org/10.1371/journal.pone.0042164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wagle N, Berger MF, Davis MJ, Blumenstiel B, Defelice M, Pochanard P, Ducar M, Van Hummelen P, Macconaill LE, Hahn WC, Meyerson M, Gabriel SB, Garraway LA. High-throughput detection of actionable genomic alterations in clinical tumor samples by targeted, massively parallel sequencing. Cancer Discov. 2012;2(1):82–93. doi:2159-8290.CD-11-0184 [pii]. https://doi.org/10.1158/2159-8290.CD-11-0184.

    Article  CAS  PubMed  Google Scholar 

  38. Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38(16):e164. doi:gkq603 [pii]. https://doi.org/10.1093/nar/gkq603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Annovar. http://www.openbioinformatics.org/annovar/. Accessed 4 Mar 2013.

  40. SnpEff Annotation. http://www.broadinstitute.org/gatk/guide/tagged?tag=snpeff. Accessed 21 Nov 2012.

  41. Ng PC, Henikoff S. SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res. 2003;31(13):3812–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sorting Intolerant from Tolerant (SIFT). http://sift.jcvi.org/. Accessed 4 Mar 2013.

  43. Ng PC, Henikoff S. Predicting deleterious amino acid substitutions. Genome Res. 2001;11(5):863–74. https://doi.org/10.1101/gr.176601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. PolyPhen2. http://genetics.bwh.harvard.edu/pph2/. Accessed 25 Feb 2013.

  45. Adzhubei I, Jordan DM, Sunyaev SR. Predicting functional effect of human missense mutations using PolyPhen-2. Curr Protoc Hum Genet. 2013;Chapter 7:Unit7 20. https://doi.org/10.1002/0471142905.hg0720s76.

    Article  PubMed  Google Scholar 

  46. Mutation Taster. http://www.mutationtaster.org/index.html. Accessed 6 Dec 2012.

  47. Schwarz JM, Rodelsperger C, Schuelke M, Seelow D. MutationTaster evaluates disease-causing potential of sequence alterations. Nat Methods. 2010;7(8):575–6. doi:nmeth0810-575 [pii]. https://doi.org/10.1038/nmeth0810-575.

    Article  CAS  PubMed  Google Scholar 

  48. Schwarz JM, Cooper DN, Schuelke M, Seelow D. MutationTaster2: mutation prediction for the deep-sequencing age. Nat Methods. 2014;11(4):361–2. https://doi.org/10.1038/nmeth.2890.

    Article  CAS  PubMed  Google Scholar 

  49. Torrent Suite Documentation. http://ioncommunity.lifetechnologies.com/docs/DOC-3343. Accessed 17 Jan 2013.

  50. Jennings LJ, Arcila ME, Corless C, Kamel-Reid S, Lubin IM, Pfeifer J, Temple-Smolkin RL, Voelkerding KV, Nikiforova MN. Guidelines for validation of next-generation sequencing-based oncology panels: a joint consensus recommendation of the Association for Molecular Pathology and College of American Pathologists. J Mol Diagn. 2017;19(3):341–65. https://doi.org/10.1016/j.jmoldx.2017.01.011.

    Article  PubMed  Google Scholar 

  51. Commission on Laboratory Accreditation CoAP. Commission on Laboratory Accreditation. Laboratory Accreditation Program: Molecular Pathology Checklist; 2016.

    Google Scholar 

  52. Schrijver I, Farkas DH, Gibson JS, Lyon E, Committee AMPE. The evolving role of the laboratory professional in the age of genome sequencing: a vision of the Association for Molecular Pathology. J Mol Diagn. 2015;17(4):335–8. https://doi.org/10.1016/j.jmoldx.2015.03.001.

    Article  PubMed  Google Scholar 

  53. Cucoranu IC, Parwani AV, West AJ, Romero-Lauro G, Nauman K, Carter AB, Balis UJ, Tuthill MJ, Pantanowitz L. Privacy and security of patient data in the pathology laboratory. J Pathol Inform. 2013;4:4. https://doi.org/10.4103/2153-3539.108542.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Yohe SL, Carter AB, Pfeifer JD, Crawford JM, Cushman-Vokoun A, Caughron S, Leonard DG. Standards for clinical grade genomic databases. Arch Pathol Lab Med. 2015;139(11):1400–12. https://doi.org/10.5858/arpa.2014-0568-CP.

    Article  PubMed  Google Scholar 

  55. Gargis AS, Kalman L, Bick DP, da Silva C, Dimmock DP, Funke BH, Gowrisankar S, Hegde MR, Kulkarni S, Mason CE, Nagarajan R, Voelkerding KV, Worthey EA, Aziz N, Barnes J, Bennett SF, Bisht H, Church DM, Dimitrova Z, Gargis SR, Hafez N, Hambuch T, Hyland FC, Luna RA, MacCannell D, Mann T, McCluskey MR, McDaniel TK, Ganova-Raeva LM, Rehm HL, Reid J, Campo DS, Resnick RB, Ridge PG, Salit ML, Skums P, Wong LJ, Zehnbauer BA, Zook JM, Lubin IM. Good laboratory practice for clinical next-generation sequencing informatics pipelines. Nat Biotechnol. 2015;33(7):689–93. https://doi.org/10.1038/nbt.3237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yandell M, Huff C, Hu H, Singleton M, Moore B, Xing J, Jorde LB, Reese MG. A probabilistic disease-gene finder for personal genomes. Genome Res. doi:gr.123158.111 [pii]. 2011; https://doi.org/10.1101/gr.123158.111.

  57. Rope AF, Wang K, Evjenth R, Xing J, Johnston JJ, Swensen JJ, Johnson WE, Moore B, Huff CD, Bird LM, Carey JC, Opitz JM, Stevens CA, Jiang T, Schank C, Fain HD, Robison R, Dalley B, Chin S, South ST, Pysher TJ, Jorde LB, Hakonarson H, Lillehaug JR, Biesecker LG, Yandell M, Arnesen T, Lyon GJ. Using VAAST to identify an X-linked disorder resulting in lethality in male infants due to N-terminal acetyltransferase deficiency. Am J Hum Genet. 2011;89:345. doi:S0002-9297(11)00210-2 [pii]. https://doi.org/10.1016/j.ajhg.2011.05.017.

    Article  CAS  PubMed Central  Google Scholar 

  58. Ionita-Laza I, Makarov V, Yoon S, Raby B, Buxbaum J, Nicolae DL, Lin X. Finding disease variants in Mendelian disorders by using sequence data: methods and applications. Am J Hum Genet. 2011;89(6):701–12. doi:S0002-9297(11)00481-2 [pii]. https://doi.org/10.1016/j.ajhg.2011.11.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Omicia. http://www.omicia.com/. Accessed 27 Feb 2013.

  60. Ingenuity Systems. http://www.ingenuity.com/. Accessed 11 Mar 2013.

  61. SV Bio. http://www.svbio.com/. Accessed 26 Feb 2013.

  62. Agilent Technologies. http://www.agilent.com/en-us/solutions/clinical-grade-variant-assessment/cartagenia-bench-lab-for-clinical-genetics. Accessed 26 May 2017.

  63. Pierian Dx. http://pieriandx.com. Accessed 26 May 2017.

  64. Golden Helix Var Seq. http://goldenhelix.com/products/VarSeq/ Accessed 26 May 2017.

  65. Need AC, Shashi V, Hitomi Y, Schoch K, Shianna KV, McDonald MT, Meisler MH, Goldstein DB. Clinical application of exome sequencing in undiagnosed genetic conditions. J Med Genet. 2012;49(6):353–61. https://doi.org/10.1136/jmedgenet-2012-100819.

    Article  CAS  PubMed  Google Scholar 

  66. Yang Y, Muzny DM, Reid JG, Bainbridge MN, Willis A, Ward PA, Braxton A, Beuten J, Xia F, Niu Z, Hardison M, Person R, Bekheirnia MR, Leduc MS, Kirby A, Pham P, Scull J, Wang M, Ding Y, Plon SE, Lupski JR, Beaudet AL, Gibbs RA, Eng CM. Clinical whole-exome sequencing for the diagnosis of mendelian disorders. N Engl J Med. 2013;369(16):1502–11. https://doi.org/10.1056/NEJMoa1306555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhu X, Petrovski S, Xie P, Ruzzo EK, Lu YF, McSweeney KM, Ben-Zeev B, Nissenkorn A, Anikster Y, Oz-Levi D, Dhindsa RS, Hitomi Y, Schoch K, Spillmann RC, Heimer G, Marek-Yagel D, Tzadok M, Han Y, Worley G, Goldstein J, Jiang YH, Lancet D, Pras E, Shashi V, McHale D, Need AC, Goldstein DB. Whole-exome sequencing in undiagnosed genetic diseases: interpreting 119 trios. Genet Med. 2015;17(10):774–81. https://doi.org/10.1038/gim.2014.191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hegde M, Santani A, Mao R, Ferreira-Gonzalez A, Weck KE, Voelkerding KV. Development and validation of clinical whole-exome and whole-genome sequencing for detection of germline variants in inherited disease. Arch Pathol Lab Med. 2017;141(6):798–805. https://doi.org/10.5858/arpa.2016-0622-RA.

    Article  CAS  PubMed  Google Scholar 

  69. Weinstein ND. What does it mean to understand a risk? Evaluating risk comprehension. J Natl Cancer Inst Monogr. 1999;1999(25):15–20.

    Article  Google Scholar 

  70. Ensenauer RE, Michels VV, Reinke SS. Genetic testing: practical, ethical, and counseling considerations. Mayo Clin Proc. 2005;80(1):63–73.

    Article  PubMed  Google Scholar 

  71. Nowak R. Genetic testing set for takeoff. Science. 1994;265(5171):464–7.

    Article  CAS  PubMed  Google Scholar 

  72. Machens A, Gimm O, Hinze R, Hoppner W, Boehm BO, Dralle H. Genotype-phenotype correlations in hereditary medullary thyroid carcinoma: oncological features and biochemical properties. J Clin Endocrinol Metab. 2001;86(3):1104–9.

    CAS  PubMed  Google Scholar 

  73. Wei Q, Wang L, Wang Q, Kruger WD, Dunbrack RL Jr. Testing computational prediction of missense mutation phenotypes: functional characterization of 204 mutations of human cystathionine beta synthase. Proteins. 2010;78(9):2058–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc. 2009;4(7):1073–81.

    Article  CAS  PubMed  Google Scholar 

  75. Li B, Krishnan VG, Mort ME, Xin F, Kamati KK, Cooper DN, Mooney SD, Radivojac P. Automated inference of molecular mechanisms of disease from amino acid substitutions. Bioinformatics. 2009;25(21):2744–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Dorfman R, Nalpathamkalam T, Taylor C, Gonska T, Keenan K, Yuan XW, Corey M, Tsui LC, Zielenski J, Durie P. Do common in silico tools predict the clinical consequences of amino-acid substitutions in the CFTR gene? Clin Genet. 2010;77(5):464–73.

    Article  CAS  PubMed  Google Scholar 

  77. Ramensky V, Bork P, Sunyaev S. Human non-synonymous SNPs: server and survey. Nucleic Acids Res. 2002;30(17):3894–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ferrer-Costa C, Gelpi JL, Zamakola L, Parraga I, de la Cruz X, Orozco M. PMUT: a web-based tool for the annotation of pathological mutations on proteins. Bioinformatics. 2005;21(14):3176–8.

    Article  CAS  PubMed  Google Scholar 

  79. Spencer DS, Stites WE. The M32L substitution of staphylococcal nuclease: disagreement between theoretical prediction and experimental protein stability. J Mol Biol. 1996;257(3):497–9.

    Article  CAS  PubMed  Google Scholar 

  80. Kang HH, Williams R, Leary J, Ringland C, Kirk J, Ward R. Evaluation of models to predict BRCA germline mutations. Br J Cancer. 2006;95(7):914–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Engelhardt BE, Jordan MI, Muratore KE, Brenner SE. Protein molecular function prediction by Bayesian phylogenomics. PLoS Comput Biol. 2005;1(5):e45.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Ng PC, Henikoff S. Accounting for human polymorphisms predicted to affect protein function. Genome Res. 2002;12(3):436–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sunyaev S, Ramensky V, Koch I, Lathe W 3rd, Kondrashov AS, Bork P. Prediction of deleterious human alleles. Hum Mol Genet. 2001;10(6):591–7.

    Article  CAS  PubMed  Google Scholar 

  84. Lopez-Ferrando V, Gazzo A, de la Cruz X, Orozco M, Gelpi JL. PMut: a web-based tool for the annotation of pathological variants on proteins, 2017 update. Nucleic Acids Res. 2017;45:W222. https://doi.org/10.1093/nar/gkx313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Pejaver VUJ, Lugo-Martinez J, Pagel KA, Lin GN, Nam H, Mort M, Cooper DN, Sebat J, Iakoucheva LM, Mooney SD, Radivojac P. MutPred2: inferring the molecular and phenotypic impact of amino acid variants. bioRxiv. 2017; https://doi.org/10.1101/134981.

  86. Ioannidis NM, Rothstein JH, Pejaver V, Middha S, McDonnell SK, Baheti S, Musolf A, Li Q, Holzinger E, Karyadi D, Cannon-Albright LA, Teerlink CC, Stanford JL, Isaacs WB, Xu J, Cooney KA, Lange EM, Schleutker J, Carpten JD, Powell IJ, Cussenot O, Cancel-Tassin G, Giles GG, MacInnis RJ, Maier C, Hsieh CL, Wiklund F, Catalona WJ, Foulkes WD, Mandal D, Eeles RA, Kote-Jarai Z, Bustamante CD, Schaid DJ, Hastie T, Ostrander EA, Bailey-Wilson JE, Radivojac P, Thibodeau SN, Whittemore AS, Sieh W. REVEL: an ensemble method for predicting the pathogenicity of rare missense variants. Am J Hum Genet. 2016;99(4):877–85. https://doi.org/10.1016/j.ajhg.2016.08.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zhang MQ. Statistical features of human exons and their flanking regions. Hum Mol Genet. 1998;7(5):919–32.

    Article  CAS  PubMed  Google Scholar 

  88. Splice Site Tools: A Comparative Analysis Report. http://www.ngrl.org.uk/Manchester/sites/default/files/publications/Informatics/NGRL_Splice_Site_Tools_Analysis_2009.pdf. Accessed 20 June 2017.

  89. Pertea M, Lin X, Salzberg SL. GeneSplicer: a new computational method for splice site prediction. Nucleic Acids Res. 2001;29(5):1185–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Reese MG, Eeckman FH, Kulp D, Haussler D. Improved splice site detection in Genie. J Comput Biol. 1997;4(3):311–23. https://doi.org/10.1089/cmb.1997.4.311.

    Article  CAS  PubMed  Google Scholar 

  91. Desmet FO, Hamroun D, Lalande M, Collod-Beroud G, Claustres M, Beroud C. Human Splicing Finder: an online bioinformatics tool to predict splicing signals. Nucleic Acids Res. 2009;37(9):e67. https://doi.org/10.1093/nar/gkp215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hebsgaard SM, Korning PG, Tolstrup N, Engelbrecht J, Rouze P, Brunak S. Splice site prediction in Arabidopsis thaliana pre-mRNA by combining local and global sequence information. Nucleic Acids Res. 1996;24(17):3439–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Brunak S, Engelbrecht J, Knudsen S. Prediction of human mRNA donor and acceptor sites from the DNA sequence. J Mol Biol. 1991;220(1):49–65.

    Article  CAS  PubMed  Google Scholar 

  94. Yeo G, Burge CB. Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals. J Comput Biol. 2004;11(2–3):377–94. https://doi.org/10.1089/1066527041410418.

    Article  CAS  PubMed  Google Scholar 

  95. Raponi M, Kralovicova J, Copson E, Divina P, Eccles D, Johnson P, Baralle D, Vorechovsky I. Prediction of single-nucleotide substitutions that result in exon skipping: identification of a splicing silencer in BRCA1 exon 6. Hum Mutat. 2011;32(4):436–44. https://doi.org/10.1002/humu.21458.

    Article  CAS  PubMed  Google Scholar 

  96. Fairbrother WG, Yeo GW, Yeh R, Goldstein P, Mawson M, Sharp PA, Burge CB. RESCUE-ESE identifies candidate exonic splicing enhancers in vertebrate exons. Nucleic Acids Res. 2004;32(Web Server issue):W187–90. https://doi.org/10.1093/nar/gkh393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Cartegni L, Wang J, Zhu Z, Zhang MQ, Krainer AR. ESEfinder: a web resource to identify exonic splicing enhancers. Nucleic Acids Res. 2003;31(13):3568–3571kl.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Smith PJ, Zhang C, Wang J, Chew SL, Zhang MQ, Krainer AR. An increased specificity score matrix for the prediction of SF2/ASF-specific exonic splicing enhancers. Hum Mol Genet. 2006;15(16):2490–508. https://doi.org/10.1093/hmg/ddl171.

    Article  CAS  PubMed  Google Scholar 

  99. Interactive Biosoftware Splicing Prediction Module. http://www.interactive-biosoftware.com/doc/alamut-visual/2.9/splicing.html. Accessed 20 June 2017.

  100. Houdayer C, Dehainault C, Mattler C, Michaux D, Caux-Moncoutier V, Pages-Berhouet S, d'Enghien CD, Lauge A, Castera L, Gauthier-Villars M, Stoppa-Lyonnet D. Evaluation of in silico splice tools for decision-making in molecular diagnosis. Hum Mutat. 2008;29(7):975–82. https://doi.org/10.1002/humu.20765.

    Article  CAS  PubMed  Google Scholar 

  101. Javitt G, Katsanis S, Scott J, Hudson K. Developing the blueprint for a genetic testing registry. Public Health Genomics. 2010;13(2):95–105.

    Article  CAS  PubMed  Google Scholar 

  102. Bale S, Devisscher M, Van Criekinge W, Rehm HL, Decouttere F, Nussbaum R, Dunnen JT, Willems P. MutaDATABASE: a centralized and standardized DNA variation database. Nat Biotechnol. 2011;29(2):117–8.

    Article  CAS  PubMed  Google Scholar 

  103. Durbin RM, Abecasis GR, Altshuler DL, Auton A, Brooks LD, Durbin RM, Gibbs RA, Hurles ME, McVean GA. A map of human genome variation from population-scale sequencing. Nature. 2010;467(7319):1061–73.

    Article  CAS  PubMed  Google Scholar 

  104. Cotton RG, Al Aqeel AI, Al-Mulla F, Carrera P, Claustres M, Ekong R, Hyland VJ, Macrae FA, Marafie MJ, Paalman MH, Patrinos GP, Qi M, Ramesar RS, Scott RJ, Sijmons RH, Sobrido MJ, Vihinen M. Capturing all disease-causing mutations for clinical and research use: toward an effortless system for the Human Variome Project. Genet Med. 2009;11(12):843–9.

    Article  PubMed  Google Scholar 

  105. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E, Voelkerding K, Rehm HL, Committee ALQA. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405–24. https://doi.org/10.1038/gim.2015.30.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Kircher M, Witten DM, Jain P, O'Roak BJ, Cooper GM, Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet. 2014;46(3):310–5. https://doi.org/10.1038/ng.2892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Salgado D, Bellgard MI, Desvignes JP, Beroud C. How to identify pathogenic mutations among all those variations: variant annotation and filtration in the genome sequencing era. Hum Mutat. 2016;37(12):1272–82. https://doi.org/10.1002/humu.23110.

    Article  CAS  PubMed  Google Scholar 

  108. Crockett DK, Piccolo SR, Ridge PG, Margraf RL, Lyon E, Williams MS, Mitchell JA. Predicting phenotypic severity of uncertain gene variants in the RET proto-oncogene. PLoS One. 2011;6(3):e18380. https://doi.org/10.1371/journal.pone.0018380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Thompson BA, Greenblatt MS, Vallee MP, Herkert JC, Tessereau C, Young EL, Adzhubey IA, Li B, Bell R, Feng B, Mooney SD, Radivojac P, Sunyaev SR, Frebourg T, Hofstra RM, Sijmons RH, Boucher K, Thomas A, Goldgar DE, Spurdle AB, Tavtigian SV. Calibration of multiple in silico tools for predicting pathogenicity of mismatch repair gene missense substitutions. Hum Mutat. 2013;34(1):255–65. https://doi.org/10.1002/humu.22214.

    Article  CAS  PubMed  Google Scholar 

  110. Gonzalez-Perez A, Lopez-Bigas N. Improving the assessment of the outcome of nonsynonymous SNVs with a consensus deleteriousness score, Condel. Am J Hum Genet. 2011;88(4):440–9. https://doi.org/10.1016/j.ajhg.2011.03.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Crockett DK, Ridge PG, Wilson AR, Lyon E, Williams MS, Narus SP, Facelli JC, Mitchell JA. Consensus: a framework for evaluation of uncertain gene variants in laboratory test reporting. Genome Med. 2012;4(5):48. https://doi.org/10.1186/gm347.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Amendola LM, Jarvik GP, Leo MC, McLaughlin HM, Akkari Y, Amaral MD, Berg JS, Biswas S, Bowling KM, Conlin LK, Cooper GM, Dorschner MO, Dulik MC, Ghazani AA, Ghosh R, Green RC, Hart R, Horton C, Johnston JJ, Lebo MS, Milosavljevic A, Ou J, Pak CM, Patel RY, Punj S, Richards CS, Salama J, Strande NT, Yang Y, Plon SE, Biesecker LG, Rehm HL. Performance of ACMG-AMP variant-interpretation guidelines among nine laboratories in the clinical sequencing exploratory research consortium. Am J Hum Genet. 2016;99(1):247. https://doi.org/10.1016/j.ajhg.2016.06.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Li MM, Datto M, Duncavage EJ, Kulkarni S, Lindeman NI, Roy S, Tsimberidou AM, Vnencak-Jones CL, Wolff DJ, Younes A, Nikiforova MN. Standards and guidelines for the interpretation and reporting of sequence variants in cancer: a joint consensus recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn. 2017;19(1):4–23. https://doi.org/10.1016/j.jmoldx.2016.10.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl V. Voelkerding .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Crockett, D.K., Voelkerding, K.V., Brown, A.F., Stewart, R.L. (2019). Bioinformatics Tools in Clinical Genomics. In: Netto, G., Kaul, K. (eds) Genomic Applications in Pathology. Springer, Cham. https://doi.org/10.1007/978-3-319-96830-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96830-8_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96829-2

  • Online ISBN: 978-3-319-96830-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics