Skip to main content

Study Two: Stretch Intensity vs. Inflammation: Is There a Dose-Dependent Association?

  • Chapter
  • First Online:
  • 346 Accesses

Abstract

After observing that high-intensity passive static stretching causes an inflammatory response, as suggested by the previous study, the next step was to determine the existence of a stretching threshold in relation to inflammation. In other words, is there a fixed or a range of intensity, from which stretching (a mechanical force), above or below this threshold, is associated with an inflammatory response. Eleven recreationally active males were involved in a randomised crossover trial. Each participant was exposed to three different stretching intensities, 30 (low), 60 (moderate), and 90 (high) corresponding to 30, 60, and 90% of the maximum range of motion of each participant’s right hamstring muscle. During the stretching sessions, the duration of the stretch was for 60 s, repeated for five times. To determine the occurrence of an inflammatory response, hsCRP was measured. It was observed that both a low- and moderate-intensity passive static stretch was not associated with an inflammatory response. However, similar to study one, inflammation was associated with a high-intensity passive static stretch. The current data revealed that an increase in passive static stretching intensity was associated with progressive increase in hsCRP. In practical terms, this suggests that low- and moderate-passive static stretching may be of greater benefit for both performance and recovery of musculoskeletal tissue.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ablij, H. C., & Meinders, A. E. (2002). C-reactive protein: History and revival. European Journal of Internal Medicine, 13, 412–422.

    Article  CAS  Google Scholar 

  • Apostolopoulos, N., Metsios, G. S., Flouris, A. D., Koutedakis, Y., & Wyon, M. (2015). The relevance of stretch intensity and position - a systematic review. Frontiers in Psychology, 6, 1128.

    Article  Google Scholar 

  • Baliki, M. N., Geha, P. Y., & Apkarian, A. V. (2009). Parsing pain perception between nociceptive representation and magnitude estimation. Journal of Neurophysiology, 101, 875–887.

    Article  CAS  Google Scholar 

  • Behm, D. G., & Kibele, A. (2007). Effects of differing intensities of static stretching on jump performance. European Journal of Applied Physiology, 101, 587–594.

    Article  Google Scholar 

  • Boone, D. C., & Azen, S. P. (1979). Normal range of motion of joints in male subjects. Journal of Bone and Joint Surgery (American Volume), 61, 756–759.

    Article  CAS  Google Scholar 

  • Frey, W., Wassmer, P., Frey-Rinddova, P., Braun, D., Schwarz, F., Arnold, M., et al. (1994). Muscle aches and biochemical changes following a ultra-marathon in the cold-modification by diclofenac. Schweizerische Zeitschrift für Medizin und Traumatologie, 2, 30–36.

    Google Scholar 

  • Gabay, C. (2006). Interleukin-6 and chronic inflammation. Arthritis Research & Therapy, 8, S3–S8.

    Article  Google Scholar 

  • Gresnigt, M. S., Joosten, L. A. B., Verschueren, I., Van Der Meer, J. W. M., Netea, M. G., Dinaello, C. A., et al. (2012). Neutrophil inhibition of proinflammatory cytokine responses. Journal of Immunology, 189, 4806–4815.

    Article  CAS  Google Scholar 

  • Jacobs, C. A., & Sciacia, A. D. (2011). Factors that influence the efficacy of stretching programs for patients with hypomobility. Sports Health, 3, 520–523.

    Article  Google Scholar 

  • Kilicarslan, A., Uysal, A., & Roach, E. C. (2013). Acute phase reactants. Acta Medica, 2, 2–7.

    Google Scholar 

  • Mackay, D. M. (1963). Psychophysics perceived intensity: A theoretical basis for Fechner's and Steven's laws. Science, 139, 1213–1216.

    Article  Google Scholar 

  • Marino, A., & Giotta, N. (2008). Cinacalcet, fetuin-A and interleukin-6. Nephrology, Dialysis, Transplantation, 23, 1461.

    Google Scholar 

  • Marschall, F. (1999). Wie beinflussen unterschiedliche dehnintensitaten kurzfristig die veranderung der bewegungsreichweite? (Effects of different stretch-intensity on the acute change of range of motion). Deutsche Zeitschrift fur Sportmedizin, 50, 5–9.

    Google Scholar 

  • Melzack, R., & Katz, J. (Eds.). (1999). Pain measurements in persons with pain. London, UK: Chruchill Livingstone.

    Google Scholar 

  • Mueller, M. J., & Maluf, K. (2002). Tissue adaptation to physical stress: A proposed “physical stress theory” to quide physical therapist practice, education, and research. Physical Therapy, 82, 383–403.

    PubMed  Google Scholar 

  • Mujika, I., Chatard, J.-C., Busso, T., Geyssant, A., Barale, F., & Lacoste, L. (1995). The effects of training on performance in competitive swimming. Canadian Journal of Applied Physiology, 20, 395–406.

    Article  CAS  Google Scholar 

  • Nanri, A., Moore, M. A., & Kono, S. (2007). Impact of C-reactive protein on disease risk and its relation to dietary factors: Literature review. Asian Pacific Journal of Cancer Prevention, 8, 167–177.

    PubMed  Google Scholar 

  • Noakes, T. D. (1987). Effect of exercise on serum enzyme activities in humans. Sports Medicine, 4, 245–267.

    Article  CAS  Google Scholar 

  • Pearle, A. D., Scanzello, C. R., George, S., Mandl, L. A., Dicarlo, E., Peterson, M., et al. (2007). Elevated high-sensitivity C-reactive protein levels are associated with lack inflammatory findings in patients with osteoarthritis. Osteoarthritis and Cartilage, 15, 516–523.

    Article  CAS  Google Scholar 

  • Pepys, M. B., & Hirschfield, G. M. (2003). C-reactive protein: A critical update. The Journal of Clinical Investigation, 111, 1805–1812.

    Article  CAS  Google Scholar 

  • Pizza, F. X., Koh, T. J., Mcgregor, S. J., & Brooks, S. V. (2002). Muscle inflammatory cells after passive stretches, isometric contractions, and lengthening contractions. Journal of Applied Physiology, 92, 1873–1878.

    Article  Google Scholar 

  • Pradhan, A. D., Manson, J. E., Rifai, N., Buring, J. E., & Ridker, P. M. (2001). C-reactive protein, interleukin 6, and risk of developing type 2 diabetus mellitus. JAMA, 286, 327–334.

    Article  CAS  Google Scholar 

  • Ridker, P. M. (2001). High-sensitivity C-reactive protein, potential adjunct for global risk assessment in the primary prevention of cardiovascular disease. Circulation, 103, 1813–1818.

    Article  CAS  Google Scholar 

  • Roberts, W. L., Moulton, L., Law, T. C., Farrow, G., Cooper-Anderson, M., Savory, J., et al. (2001). Evaluation of nine-automated high sensitivity C-reactive protein methods: Implications for clinical and epidemiological applications. Part 2. Clinical Chemistry, 47, 418–425.

    CAS  PubMed  Google Scholar 

  • Seiler, S. (2010). What is best practice for training intensity and duration distribution in endurance athletes? International Journal of Sports Physiology and Performance, 5, 276–291.

    Article  Google Scholar 

  • Soucie, J. M., Wang, C., Forsyth, A., Funk, S., Denny, M., Roach, K. E., et al. (2011). Range of motion measurements: Reference values and a database for comparison studies. Haemophilia, 17, 500–507.

    Article  CAS  Google Scholar 

  • Stevens, J. C., & Mack, J. D. (1959). Scales of apparent force. Journal of Experimental Psychology, 58, 405–413.

    Article  CAS  Google Scholar 

  • Tiidus, P., & Ianuzzo, C. (1983). Effects of intensity and duration of muscular exercise on delayed onset muscle soreness and serum enzymes activities. Medicine and Science in Sports and Exercise, 15, 461–465.

    Article  CAS  Google Scholar 

  • Toumi, H., F’guyer, S., & Best, T. M. (2006). The role of neutrophils in injury and repair following muscle stretch. Journal of Anatomy, 208, 459–470.

    Article  CAS  Google Scholar 

  • Vigushin, D. M., Pepys, M. B., & Hawkins, P. N. (1993). Metabolic and scintigraphic studies of radioiodinated human C-reactive protein in health and disease. The Journal of Clinical Investigation, 91, 1351–1357.

    Article  CAS  Google Scholar 

  • Zwislocki, J. J. (2009). Sensory neuroscience: Four laws of psychophysics. New York: Springer.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Apostolopoulos, N.C. (2018). Study Two: Stretch Intensity vs. Inflammation: Is There a Dose-Dependent Association?. In: Stretch Intensity and the Inflammatory Response: A Paradigm Shift. Springer, Cham. https://doi.org/10.1007/978-3-319-96800-1_4

Download citation

Publish with us

Policies and ethics