Skip to main content

The System 1

  • Chapter
  • First Online:
  • 232 Accesses

Part of the book series: SpringerBriefs in Philosophy ((BRIEFSPHILOSOPH))

Abstract

This chapter is devoted to the discovery of the core abilities underlying human numerical cognition. Neuroscientists hypothesises that human beings are born with a “number sense” that they share with other animals and that this instinct is the expression of the functioning of a “mental organ”, a set of brain circuits that exist also in other species. According to neuroscientist Stanislas Dehaene, this “mental organ” works as an accumulator, namely a kind of approximate counting device that allows us to perceive, store, and compare numerical quantities.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Antell, S. E., & Keating, L. E. (1983). Perception of numerical invariance by neonates. Child Development, 54, 695–701.

    Article  Google Scholar 

  • Beran, M. J., & Beran, M. M. (2004). Chimpanzees remember the results of onebyone addition of food items to sets over extended time periods. Psychological Science, 15, 94–99.

    Article  Google Scholar 

  • Bijeljac-Babic, R., Bertoncini, J., & Mehler, J. (1993). How do 4-day-old infants categorize multisyllabic utterances? Developmental Psychology, 29(4), 711–721.

    Article  Google Scholar 

  • Biro, D., & Matsuzawa, T. (2001). Use of numerical symbols by the chimpanzee (Pan troglodytes): Cardinals, ordinals, and the introduction of zero. Animal Cognition, 4, 193–199.

    Article  Google Scholar 

  • Boysen, S. T., & Berntson, G. G. (1989). Numerical competence in a chimpanzee. Journal of Comparative Psychology, 103(1), 23–31.

    Article  Google Scholar 

  • Brannon, E. M. (2002). The development of ordinal numerical knowledge in infancy. Cognition, 83, 223–240.

    Article  Google Scholar 

  • Brannon, E. M., & Terrace, H. S. (1998). Ordering of the numerosities 1 to 9 by monkeys. Science, 282, 746–749.

    Article  Google Scholar 

  • Brannon, E. M., & Terrace, H. S. (2000). Representation of the numerosities 1-9 by rhesus macaques (macaca mulatta). Journal of Experimental Psychology: AnimalBehavior Processes, 26(1), 31–49.

    Google Scholar 

  • Cantlon, J. F., & Brannon, E. M. (2006). The effect of heterogeneity on numerical ordering in rhesus monkeys. Infancy, 9, 173–189.

    Article  Google Scholar 

  • Clearfield, M. W., & Mix, K. S. (1999). Number versus contour length in infants’ discrimination of small visual sets. Psychological Science, 10(5), 408–411.

    Article  Google Scholar 

  • Cohen, L. B., & Marks, K. (2002). How infants process addition and subtraction events. Developmental Science, 5(2), 186–201.

    Article  Google Scholar 

  • Davis, H., & Albert, M. (1987). Failure to transfert or train a numerical discrimination using sequential visual stimuli in rats. Bulletin of the Psychonomic Society, 25, 472–474.

    Article  Google Scholar 

  • Davis, H., & Perusse, R. (1988). Numerical competence in animals: Definitional issues, current evidence and a new research agenda. Behavioural Brain Science, 11, 561–579.

    Article  Google Scholar 

  • Dehaene, S. (1997). The number sense. New York, Cambridge (UK): Oxford University Press, Penguin Press.

    Google Scholar 

  • Dehaene, S. (1992). Varieties of numerical abilities. Cognition, 44, 1–42.

    Article  Google Scholar 

  • Dehaene, S. (2011). The number sense. How the mind creates mathematics. Revised and updated edition. New York: Oxford University Press.

    Google Scholar 

  • Devlin, K. (2005). The math instinct. Why you’re a mathematical genius. New York: Thunder’s Mouth press.

    Google Scholar 

  • Emmerton, J., & Delius, J.D. (1993). Beyond sensation: Visual cognition in pigeons. In H. P. Zeigler & H. Bischof (Eds.), Vision, brain, and behavior in birds (pp. 377–390). Cambridge, MA: MIT Press.

    Google Scholar 

  • Emmerton, J., Lohmann, A., & Niemann, J. (1997). Pigeon’s serial ordering of numerosity with visual arrays. Animal Learning and Behavior, 25, 234–244.

    Article  Google Scholar 

  • Feigenson, L. (2005). A double-dissociation in infants’ representations of object arrays. Cognition, 95, 37–48.

    Article  Google Scholar 

  • Feigenson, L., Carey, S., & Hauser, M. D. (2002). The representations underlying infants’ choice of more: Object files versus analog magnitudes. Psychological Science, 13(2), 150–156.

    Article  Google Scholar 

  • Feigenson, L., Dehaene, S., & Spelke, E. S. (2004). Core systems of number. Trends in Cognitive Sciences, 8, 307–314.

    Article  Google Scholar 

  • Fernandes, D. M., & Church, R. H. (1982). Discrimination of the number of sequential events by rats. Animal Learning and Behavior, 10(2), 171–176.

    Article  Google Scholar 

  • Flombaum, J. I., Junge, J. A., & Hauser, M. D. (2005). Rhesus monkeys (Macaca mulatta) spontaneously compute addition operations over large numbers. Cognition, 97, 315–325.

    Article  Google Scholar 

  • Gallistel, C. R., & Gelman, R. (2000). Non-verbal numerical cognition: From reals to integers. Trends in Cognitive Sciences, 4, 59–65.

    Article  Google Scholar 

  • Hanus, D., & Call, J. (2007). Discrete quantity judgments in the great apes (Pan paniscus, Pan troglodytes, Gorilla gorilla, Pongo pygmaeus). Journal of Comparative Psychology, 121(3), 241–249.

    Article  Google Scholar 

  • Hauser, M. D., & Spelke, E. S. (2004). Evolutionary and developmental foundations of human knowledge: A case study of mathematics. In M. Gazzaniga (Ed.), The cognitive neurosciences (Vol. 3). Cambridge: MIT Press.

    Google Scholar 

  • Jaakkola, K., Fellner, W., Erb, L., Rodriguez, A. M., & Guarino, E. (2005). Understanding of the concept of numerically “less” by bottlenose dolphins (Tursiops truncatus). Journal of Comparative Psychology, 119, 296–303.

    Article  Google Scholar 

  • Jordan, K. E., & Brannon, E. M. (2006). Weber’s law influences numerical representations in rhesus macaques (Macaca mulatta). Animal Cognition, 9, 159–172.

    Article  Google Scholar 

  • Kilian, A., Yaman, S., Fersen, L., & Gunturkun, O. (2003). A bottlenose dolphin (Tursiops truncates) discriminates visual stimuli differing in numerosity. Learning and Behaviour, 31, 133–142.

    Article  Google Scholar 

  • Kilian, A., Von Fersen, L., & Güntürkün, O. (2005). Left hemispheric advantage for numerical abilities in the bottlenose dolphin. Behavioural Processes, 68, 179–184.

    Article  Google Scholar 

  • Kobayashi, T., Hiraki, K., & Hasegawa, T. (2005). Auditory-visual intermodal matching of small numerosities in 6-month-old infants. Developmental Science, 8, 409–419.

    Article  Google Scholar 

  • Leslie, A., Xu, F., Tremoulet, P., & Scholl, B. (1998). Indexing and the object concept: Developing what and where systems. Trends in Cognitive Science, 2(1), 10–18.

    Article  Google Scholar 

  • Lipton, J. S., & Spelke, E. S. (2003). Origins of number sense: Large-number discrimination in human infants. Psychological Science, 14(5), 396–401.

    Article  Google Scholar 

  • Lyon, B. E. (2003). Egg recognition and counting reduce costs of avian conspecific brood parasitism. Nature, 422, 495–499.

    Article  Google Scholar 

  • Marler, P., & Tamura, M. (1962). Song dialects in three populations of Whitecrowned sparrows. Condor, 64, 368–377.

    Article  Google Scholar 

  • McComb, K., Packer, C., & Pusey, A. (1994). Roaring and numerical assessment in the contests between groups of female lions, Panther leo. Animal Behaviour, 47, 379–387.

    Article  Google Scholar 

  • McCrink, K., & Wynn, K. (2004). Large number addition and subtraction by 9-month-old infants. Psychological Science, 15(11), 776–781.

    Article  Google Scholar 

  • Mechner, F. (1958). Probability relations within response sequences under ratio reinforcement. Journal of the Experimental Analysis of Behaviour, 1, 109–122.

    Article  Google Scholar 

  • Mechner, F., & Guevrekian, L. (1962). Effects of deprivation upon counting and timing in rats. Journal of the Experimental Analysis of Behavior, 5(4), 463–466.

    Article  Google Scholar 

  • Meck, W. H., & Church, R. M. (1984). Simultaneous temporal processing. Journal of Experimental Psychology: Animal Behavior Processes, 10(1), 1–29.

    Google Scholar 

  • Moore, D., Benenson, J., Reznick, J. S., Peterson, M., & Kagan, J. (1987). Effect of auditory numerical information on infants’ looking behavior: Contradictory evidence. Developmental Psychology, 23, 665–670.

    Article  Google Scholar 

  • Pepperberg, I. (2006). Grey parrot numerical competence: A review. Animal Cognition, 9, 377–391.

    Article  Google Scholar 

  • Piaget, J. (1952). The child’s conception of number. New York: Norton.

    Google Scholar 

  • Piazza, M., Izard, V., Pinel, P., Bihan, D. L., & Dehaene, S. (2004). Tuning curves for approximate numerosity in the human intraparietal sulcus. Neuron, 44(3), 547–555.

    Article  Google Scholar 

  • Platt, J. R., & Johnson, D. M. (1971). Localization of position within a homogeneous behaviour chain: Effects of error contingencies. Learning and Motivation, 2, 386–414.

    Article  Google Scholar 

  • Robins, A., Lippolis, G., Bisazza, A., Vallortigara, G., & Rogers, L. J. (1998). Lateralized agonistic responses and hind-limb use in toads. Animal Behaviour, 56, 875–881.

    Article  Google Scholar 

  • Rugani, R., Regolin, L., & Vallortigara, G. (2007). Rudimental numerical competence in 5-day-old domestic chicks: Identification of ordinal position. Journal of Experimental Psychology: Animal Behavior Processes, 33(1), 21–31.

    Google Scholar 

  • Rumbaugh, D. M., Savage-Rumbaugh, S., & Hegel, M. T. (1987). Summation in the chimpanzee (pan troglodytes). Journal of Experimental Psychology: Animal Behavior Processes, 13, 107–115.

    Google Scholar 

  • Santos, L. R., Barnes, J. L., & Mahajan, N. (2005). Expectations about numerical events in four lemur species. Animal Cognition, 8, 253–262.

    Article  Google Scholar 

  • Simon, T. J. (1999). The foundations of numerical thinking in a brain without numbers. Trends in Cognitive Sciences, 3(10), 363–364.

    Article  Google Scholar 

  • Spelke, E. S., Kestenbaum, R., Simons, D. J., & Wein, D. (1995). Spatio-temporal continuity, smoothness of motion and object identity in infancy. British Journal of Developmental Psychology, 13, 113–142.

    Article  Google Scholar 

  • Starkey, P., & Cooper, R. G. (1980). Perception of numbers by human infants. Science, 210, 1033–1035.

    Article  Google Scholar 

  • Starkey, P., Spelke, E. S., & Gelman, R. (1983). Detection of intermodal numerical correspondences by human infants. Science, 222(4620), 179–181.

    Article  Google Scholar 

  • Starkey, P., Spelke, E. S., & Gelman, R. (1990). Numerical abstraction by human infants. Cognition, 36, 97–128.

    Article  Google Scholar 

  • Sulkowski, G. M., & Hauser, M. D. (2001). Can rhesus monkeys spontaneously substract? Cognition, 79, 239–262.

    Article  Google Scholar 

  • Uller, C., Hauser, M. D., & Carey, S. (2001). Spontaneous representation of number in cotton-top tamarins. Journal of Comparative Psychology, 115, 1–10.

    Article  Google Scholar 

  • Uller, C., Jaeger, R., Guidry, G., & Martin, C. (2003). Salamanders (Plethodon cinereus) go for more: Rudiments of number in a species of basal vertebrate. Animal Cognition, 6, 105–112.

    Article  Google Scholar 

  • Wilson, M. L., Hauser, M. D., & Wrangham, R. W. (2001). Does participation in intergroup conflict depend on numerical assessment, range, location, or rank for wild chimpanzees? Animal Behaviour, 61, 1203–1216.

    Article  Google Scholar 

  • Wood, J. N., & Spelke, E. S. (2005). Infants’ enumeration of actions: numerical discrimination and its signature limits. Developmental Science, 8, 173–181.

    Article  Google Scholar 

  • Woodruff, G., & Premack, D. (1981). Primative (sic) mathematical concepts in the chimpanzee: Proportionality and numerosity. Nature, 293, 568–570.

    Article  Google Scholar 

  • Wynn, K. (1990). Children’s understanding of counting. Cognition, 36, 155–193.

    Article  Google Scholar 

  • Wynn, K. (1992). Addition and subtraction by human infants. Nature, 358, 749–750.

    Article  Google Scholar 

  • Wynn, K., Bloom, P., & Chiang, W. (2002). Enumeration of collective entities by 5-month-old infants. Cognition, 83, B55–B62.

    Article  Google Scholar 

  • Xu, F., & Arriaga, R. I. (2007). Number discrimination in 10-month-old infants. British Journal of Developmental Psychology, 25, 103–108.

    Article  Google Scholar 

  • Xu, F., & Spelke, E. S. (2000). Large number discrimination in 6-month-old infants. Cognition, 74, 1–11.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Graziano .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Graziano, M. (2018). The System 1. In: Dual-Process Theories of Numerical Cognition. SpringerBriefs in Philosophy. Springer, Cham. https://doi.org/10.1007/978-3-319-96797-4_2

Download citation

Publish with us

Policies and ethics