Skip to main content

On Approximation of an Optimal Control Problem for Ill-Posed Strongly Nonlinear Elliptic Equation with p-Laplace Operator

  • Chapter
  • First Online:

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

We study an optimal control problem for one class of non-linear elliptic equations with p-Laplace operator and L 1-nonlinearity in their right-hand side. We deal with such case of nonlinearity when we cannot expect to have a solution of the state equation for any given control. After defining a suitable functional class in which we look for solutions and a special cost functional, we prove the existence of optimal pairs. In order to handle the inherent degeneracy of the p-Laplacian and strong non-linearity in the right-hand side of elliptic equation, we use a two-parametric (ε, k)-regularization of p-Laplace operator, where we approximate it by a bounded monotone operator, and involve a special fictitious optimization problem. We derive existence of optimal solutions to the parametrized optimization problems at each (ε, k)-level of approximation. We also deduce the differentiability of the state for approximating problem with respect to the controls and obtain an optimality system based on the Lagrange principle. Further we discuss the asymptotic behaviour of the optimal solutions to regularized problems as the parameters ε and k tend to zero and infinity, respectively.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Attouch, H.: Variational Convergence for Functions and Operators. Pitman Advanced Pub. Program, Boston (1984)

    Google Scholar 

  2. Boccardo, L., Murat, F.: Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations. Nonlinear Anal. Theory Methods Appl. 19, 581–597 (1992)

    Article  MathSciNet  Google Scholar 

  3. Casas, E., Fernandez, L.A.: Optimal control of quasilinear elliptic equations with non differentiable coefficients at the origin. Rev. Mat. Univ. Complut. Madrid 4(2–3), 227–250 (1991)

    MathSciNet  MATH  Google Scholar 

  4. Casas, E., Fernandez, L.A.: Distributed controls of systems governed by a general class of quasilinear elliptic systems. J. Differ. Equ. 104, 20–47 (1993)

    Article  Google Scholar 

  5. Casas, E., Kavian, O., Puel, J.P.: Optimal control of an ill-posed elliptic semilinear equation with an exponential nonlinearity. ESAIM Control Optim. Calc. Var. 3, 361–380 (1998)

    Article  MathSciNet  Google Scholar 

  6. Casas, E., Kogut, P.I., Leugering, G.: Approximation of optimal control problems in the coefficient for the p-Laplace equation. I. Convergence result. SIAM J. Control. Optim. 54(3), 1406–1422 (2016)

    Article  MathSciNet  Google Scholar 

  7. Durante, T., Kupenko, O.P., Manzo, R.: On attainability of optimal controls in coefficients for system of Hammerstein type with anisotropic p-Laplacian. Ricerche Mat. 66(2), 259–292 (2017)

    Article  MathSciNet  Google Scholar 

  8. Kogut, P.I., Kupenko, O.P.: On attainability of optimal solutions for linear elliptic equations with unbounded coefficients. Visnyk DNU. Series: Mathematical Modelling, Dnipropetrovsk: DNU 20(4), 63–82 (2012)

    Google Scholar 

  9. Kogut, P.I., Kupenko, O.P.: On optimal control problem for an ill-posed strongly nonlinear elliptic equation with p-Laplace operator and L 1-type of nonlinearity. Discrete Contin. Dynam. Syst. Ser. B (2018, to appear)

    Google Scholar 

  10. Kogut, P.I., Leugering, G.: Optimal Control Problems for Partial Differential Equations on Reticulated Domains. Approximation and Asymptotic Analysis, Series: Systems and Control. Birkhäuser, Boston (2011)

    Google Scholar 

  11. Kogut, P.I., Putchenko, A.O.: On approximate solutions to one class of non-linear Dirichlet elliptic boundary value problems. Visnyk DNU. Series: Mathematical Modelling, Dnipropetrovsk: DNU 24(8), 27–55 (2016)

    Google Scholar 

  12. Kogut, P.I., Manzo, R., Putchenko, A.O.: On approximate solutions to the Neumann elliptic boundary value problem with non-linearity of exponential type. Bound. Value Probl. 2016(1), 1–32 (2016)

    Article  MathSciNet  Google Scholar 

  13. Kupenko, O.P., Manzo, R.: Approximation of an optimal control problem in the coefficients for variational inequality with anisotropic p-Laplacian. Nonlinear Differ. Equ. Appl. 35(23) (2016). https://doi.org/10.1007/s00030-016-0387-9

  14. Kupenko, O.P., Manzo, R.: On optimal controls in coefficients for ill-posed non-linear elliptic Dirichlet boundary value problems. Discrete Contin. Dyn. Syst. Ser. B 23(4), 1363–1393 (2018). https://doi.org/10.3934/dcdsb.2018155

    Article  MathSciNet  Google Scholar 

  15. Orsina, L.: Elliptic Equations with Measure Data. Preprint, Sapienza University of Rome (2011)

    Google Scholar 

Download references

Acknowledgements

Research funded by the DFG-cluster CE315: Engineering of Advanced Materials

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kogut, P.I., Kupenko, O.P. (2019). On Approximation of an Optimal Control Problem for Ill-Posed Strongly Nonlinear Elliptic Equation with p-Laplace Operator. In: Sadovnichiy, V., Zgurovsky, M. (eds) Modern Mathematics and Mechanics. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-96755-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96755-4_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96754-7

  • Online ISBN: 978-3-319-96755-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics