Skip to main content

Use of Agronanobiotechnology in the Agro-Food Industry to Preserve Environmental Health and Improve the Welfare of Farmers

  • Chapter
  • First Online:
Agricultural Nanobiotechnology

Abstract

Agronanobiotechnology is a term that refers to the intersection of agronomy, nanotechnology, and biotechnology. Agronanobiotechnology is a discipline in which tools from nanotechnology are developed and applied to the study of agronomic and biological phenomena. The objective of this chapter is to present cutting-edge knowledge regarding agronanobiotechnology, which is aimed at preserving environmental health and improving the welfare of farmers while also increasing crop yields and the production of innocuous feed. Producers of innovative products in agronanobiotechnology are experiencing difficulties in bringing these products to market, because of their high production costs, which regularly are required in high volumes in the agricultural sector, while unclear technical benefits, legislative uncertainties, and negative public opinion are hampering the development of agronanobiotechnology; notwithstanding these difficulties, the possibilities offered by agronanobiotechnology in several agricultural applications are moving forward. Meanwhile, progress in legislation, nanoremediation, environmental monitoring, international safety regulation, and drug delivery techniques could improve the agricultural and livestock sector indirectly. For research and development in agronanobiotechnology to move forward, long-term in situ field trials are required, while social welfare must also be guaranteed in order to shape sustainable development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arora A, Padua GW (2010) Review: nanocomposites in food packaging. J Food Sci 75(1):R43–R49

    Article  CAS  Google Scholar 

  • Azeredo HMC, Mattoso LHC, McHugh TH (2011) Nanocomposites in food packaging—a review. In: Reddy BSR (ed) Advances in diverse industrial applications of nanocomposites. Intech, Croatia, pp 57–78

    Google Scholar 

  • Baker S, Volova T, Prudnikova SV, Satish S, Prasad MNN (2017) Nanoagroparticles emerging trends and future prospect in modern agriculture system. Environ Toxicol Pharmacol 53:10–17

    Article  CAS  Google Scholar 

  • Bishoge OK, Zhang LL, Suntu SL, Jin H, Zewde AA, Qi ZW (2018) Remediation of water and wastewater by using engineered nanomaterials: a review. J Environ Sci Health Part A Tox Hazard Subst Environ Eng 53(6):537–554

    Article  CAS  Google Scholar 

  • Cox A, Venkatachalam P, Sahi S, Sharma N (2017) Reprint of: silver and titanium dioxide nanoparticle toxicity in plants: a review of current research. Plant Physiol Biochem 110:33–49

    Article  CAS  Google Scholar 

  • Dasgupta N, Ranjan S, Ramalingam C (2017) Applications of nanotechnology in agriculture and water quality management. Environ Chem Lett 15(4):591–605

    Article  CAS  Google Scholar 

  • De la Rosa G, Garcia-Castaneda C, Vazquez-Nuñez E, Alonso-Castro AJ, Basurto-Islas G, Mendoza A, Cruz-Jimenez G, Molina C (2017) Physiological and biochemical response of plants to engineered NMs: implications on future design. Plant Physiol Biochem 110:226–235

    Google Scholar 

  • Duhan JS, Kumar R, Kumar N, Kaur P, Nehra K, Duhan S (2017) Nanotechnology: the new perspective in precision agriculture. Biotechnol Rep 15:11–23

    Article  Google Scholar 

  • Fernández-Luqueño F, López-Valdez F, Gamero-Melo P, Luna-Suárez S, Aguilera-González EN, Martínez AI, García-Guillermo MS, Hernández-Martínez G, Herrera-Mendoza R, Álvarez-Garza MA, Pérez-Velázquez IR (2013) Heavy metal pollution in drinking water—a global risk for human health: a review. Afr J Environ Sci Technol 7(7):567–584

    Google Scholar 

  • Fernández-Luqueño F, López-Valdez F, Valerio-Rodríguez MF, Pariona N, Hernández-López JL, García-Ortíz I, López-Baltazar J, Vega-Sánchez MC, Espinoza-Zapata R, Acosta-Gallegos JA (2014) Effect of nanofertilizers on plant growth and development, and their interrelationship with the environment. In: López-Valdez F, Fernández-Luqueño F (eds) Fertilizers: components, uses in agriculture and environmental impacts. Nova, New York, USA, pp 211–224

    Google Scholar 

  • Fernández-Luqueño F, López-Valdez F, Sarabia-Castillo CR, García-Mayagoitia S, Pérez-Ríos SR (2017a) Bioremediation of polycyclic aromatic hydrocarbons–polluted soils at laboratory and field scale: a review of the literature on plants and microorganisms. In: Naser A, Saravjeet G, Narendra T (eds) Enhancing cleanup of environmental pollutants, vol 1 (biological approaches). Springer, USA, pp 43–64

    Chapter  Google Scholar 

  • Fernández-Luqueño F, López-Valdez F, Pérez-Morales C, García-Mayagoitia S, Sarabia-Castillo CR, Pérez-Ríos SR (2017b) Enhancing decontamination of PAHs-polluted soils: role of organic and mineral amendments. In: Naser A, Saravjeet G, Narendra T (eds) Enhancing cleanup of environmental pollutants, vol 2 (non-biological approaches). Springer, USA, pp 339–368

    Chapter  Google Scholar 

  • Fu YQ, Li LH, Wang PW, Qu J, Fu YP, Wang H, Sun JR, Lu CL (2012) Delivering DNA into plant cell by gene carriers of ZnS nanoparticles. Chem Res Chin Univ 28(4):672–676

    CAS  Google Scholar 

  • Ge MZ, Cao CY, Huang JY, Zhang XN, Tang YX, Zhou XR, Zhang KQ, Chen Z, Lai YK (2018) Rational design of materials interface at nanoscale towards intelligent oil–water separation. Nanoscale Hor 3(3):235–260

    Article  CAS  Google Scholar 

  • Ghasabkolaei N, Choobbasti AJ, Roshan N, Ghasemi SE (2017) Geotechnical properties of the soils modified with nanomaterials: a comprehensive review. Arch Civ Mech Eng 17(3):639–650

    Article  Google Scholar 

  • He YZ, Xiang YJ, Zhou YY, Yang Y, Zhang JC, Huang HL, Shang C, Luo L, Gao J, Tang L (2018) Selenium contamination, consequences and remediation techniques in water and soils: a review. Environ Res 164:288–301

    Article  CAS  Google Scholar 

  • Holmes AB, Gu FX (2016) Emerging nanomaterials for the application of selenium removal for wastewater treatment. Environ Sci Nano 3(5):982–996

    Article  CAS  Google Scholar 

  • Huang Y, Wang L (2016) Experimental studies on nanomaterials for soil improvement: a review. Environ Earth Sci 75(6):497

    Article  Google Scholar 

  • Iranpour B, Haddad A (2016) The influence of nanomaterials on collapsible soil treatment. Eng Geol 205:40–53

    Article  Google Scholar 

  • Justino CIL, Duarte AC, Rocha-Santos TAP (2017) Recent progress in biosensors for environmental monitoring: a review. Sensors 17(12):2918

    Article  Google Scholar 

  • Kim DY, Kadam A, Shinde S, Saratale RG, Patra J, Ghodake G (2018) Recent developments in nanotechnology transforming the agricultural sector: a transition replete with opportunities. J Sci Food Agric 98(3):849–864

    Article  CAS  Google Scholar 

  • Kumar N, Kaur P, Bhatia S (2017) Advances in bio-nanocomposite materials for food packaging: a review. Nutrit Food Sci 47(4):591–606

    Google Scholar 

  • Lefevre E, Bossa N, Wiesner MR, Gunsch CK (2016) A review of the environmental implications of in situ remediation by nanoscale zero valent iron (nZVI): behavior, transport and impacts on microbial communities. Sci Total Environ 565:889–901

    Article  CAS  Google Scholar 

  • Mahfoudhi N, Boufi S (2017) Nanocellulose as a novel nanostructured adsorbent for environmental remediation: a review. Cellulose 24(3):1171–1197

    Article  CAS  Google Scholar 

  • Medina-Pérez G, Fernández-Luqueño F, Trejo-Téllez LI, López-Valdez F, Pampillón-González L (2018) Growth and development of common bean (Phaseolus vulgaris L.) var. pinto Saltillo exposed to iron, titanium, and zinc oxide nanoparticles in an agricultural soil. Appl Ecol Environ Res 16(2):1883–1897

    Article  Google Scholar 

  • Medina-Pérez G, Fernández-Luqueño F, Vazquez-Nuñez E, López-Valdez F, Prieto-Mendez J, Madariaga-Navarrete A, Miranda-Arámbula M (in press) Remediation of polluted soils using nanotechnologies: environmental benefits and risks. Pol J Environ Stud

    Google Scholar 

  • Mihindukulasuriya SDF, Lim LT (2014) Nanotechnology development in food packaging: a review. Trends Food Sci Technol 40(2):149–167

    Article  CAS  Google Scholar 

  • Mishra S, Keswani C, Abhilash PC, Fraceto LF, Singh HB (2017) Integrated approach of agri-nanotechnology: challenges and future trends. Front Plant Sci 8:471

    PubMed  PubMed Central  Google Scholar 

  • Mukherjee A, Majumdar S, Servin AD, Pagano L, Dhankher OP, White JC (2016) Carbon nanomaterials in agriculture: a critical review. Front Plant Sci 7:172

    Article  Google Scholar 

  • Parisi C, Vigani M, Rodriguez-Cerezo E (2015) Agricultural nanotechnologies: what are the current possibilities? Nano Today 10(2):124–127

    Article  CAS  Google Scholar 

  • Poulsen R, Cedergreen N, Hayes T, Hansen M (2018) Nitrate: an environmental endocrine disruptor? A review of evidence and research needs. Environ Sci Technol 52(7):3869–3887

    Article  CAS  Google Scholar 

  • Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014

    Article  Google Scholar 

  • Rajput VD, Minkina T, Suskova S, Mandzhieva S, Tsitsuashvili V, Chapligin V, Fedorenko A (2018) Effects of copper nanoparticles (CuO NPs) on crop plants: a mini review. Bionanoscience 8(1):36–42

    Article  Google Scholar 

  • Rapini R, Marrazza G (2017) Electrochemical aptasensors for contaminants detection in food and environment: recent advances. Bioelectrochemistry 118:47–61

    Article  CAS  Google Scholar 

  • Rizwan M, Ali S, Qayyum MF, Ok YS, Adrees M, Ibrahim M, Zia-ur-Rehmand M, Faris M, Abbas F (2017) Effect of metal and metal oxide nanoparticles on growth and physiology of globally important food crops: a critical review. J Hazard Mater 322:2–16

    Article  CAS  Google Scholar 

  • Sadeghi R, Rodriguez RJ, Yao Y, Kokini JL, Doyke MP, Klaenhammer TR (2017) Advances in nanotechnology as they pertain to food and agriculture: benefits and risks. Annu Rev Food Sci Technol 8:467–492

    Article  Google Scholar 

  • Sadhu A, Ghosh I, Moriyasu Y, Mukherjee A, Bandyopadhyay M (2018) Role of cerium oxide nanoparticle-induced autophagy as a safeguard to exogenous H2O2-mediated DNA damage in tobacco BY-2 cells. Mutagenesis 33(2):161–177

    Article  Google Scholar 

  • Shakoor MB, Nawaz R, Hussain F, Raza M, Ali S, Rizwan M, Oh SE, Ahmad S (2017) Human health implications, risk assessment and remediation of As-contaminated water: a critical review. Sci Total Environ 601:756–769

    Article  Google Scholar 

  • Souza VGL, Fernando AL (2016) Nanoparticles in food packaging: biodegradability and potential migration to food—a review. Food Pack Shelf Life 8:63–70

    Article  Google Scholar 

  • Tan WJ, Peralta-Videz JR, Gardea-Torresdey JL (2018) Interaction of titanium dioxide nanoparticles with soil components and plants: current knowledge and future research needs—a critical review. Environ Sci Nano 5(2):257–278

    Article  CAS  Google Scholar 

  • Thomas M, Natarajan TS (2018) TiO2-high surface area materials based composite photocatalytic nanomaterials for degradation of pollutants: a review. In: Tayade RJ, Gandhi V (eds) Photocatalytic nanomaterials for environmental applications, vol 27. Material Research Forum, USA, pp 48–96

    Chapter  Google Scholar 

  • Thome A, Eddy KR, Reginatto C, Cecchin I (2015) Review of nanotechnology for soil and groundwater remediation: Brazilian perspectives. Water Air Soil Pollut 226(4):121

    Article  Google Scholar 

  • Torney F, Trewyn BG, Lin VSY, Wang K (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2(5):295–300

    Article  CAS  Google Scholar 

  • Tripathi DK, Tripathi A, Shweta, Singh S, Singh Y, Vishwakarma K, Yadav G, Sharma S, Singh VK, Mishra RK, Upadhyay RG, Upadhyay NK, Lee Y, Chauhan DK (2017) Uptake, accumulation and toxicity of silver nanoparticle in autotrophic plants, and heterotrophic microbes: a concentric review. Front Microbiol 8:7

    Google Scholar 

  • Ullah N, Mansha M, Khan I, Qurashi A (2018) Nanomaterial-based optical chemical sensors for the detection of heavy metals in water: recent advances and challenges. TrAC-Trends Anal Chem 100:155–166

    Article  CAS  Google Scholar 

  • Wang QO, Chen JN, Zhang HY, Lu MZ, Qiu DY, Wen YF, Kong QQ (2011) Synthesis of water soluble quantum dots for monitoring carrier-DNA nanoparticles in plant cells. J Nanosci Nanotechnol 11(3):2208–2214

    Article  CAS  Google Scholar 

  • Wang P, Lombi E, Zhao FJ, Kopittke PM (2016) Nanotechnology: a new opportunity in plant sciences. Trends Plant Sci 21(6):699–712

    Article  CAS  Google Scholar 

  • Wen J, Fang Y, Zeng GM (2018) Progress and prospect of adsorptive removal of heavy metal ions from aqueous solution using metal–organic frameworks: a review of studies from the last decade. Chemosphere 201:627–643

    Article  CAS  Google Scholar 

  • Zhao X, Meng ZG, Wang Y, Chen WJ, Sun CJ, Cui B, Cui JH, Yu ML, Zeng ZH, Guo SD, Luo D, Cheng JQ, Zhang R, Cui HX (2017) Pollen magnetofection for genetic modification with magnetic nanoparticles as gene carriers. Nat Plants 3(12):956–964

    Article  CAS  Google Scholar 

  • Zou YD, Wang XX, Khan A, Wang PY, Liu YH, Alsaedi A, Hayat T, Wang XK (2016) Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions: a review. Environ Sci Technol 50(14):7290–7304

    Article  CAS  Google Scholar 

  • Zuverza-Mena N, Martinez-Fernandez D, Du WC, Hernandez-Viezcas JA, Bonilla-Bird N, Lopez-Moreno ML, Komarek M, Peralta-Videa JR, Gardea-Torresdey JL (2017) Exposure of engineered nanomaterials to plants: Insights into the physiological and biochemical responses—a review. Plant Physiol Biochem 110:236–264

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by Ciencia Básica SEP-CONACYT project numbers 151881 and 287225, the Sustainability of Natural Resources and Energy Programs (Cinvestav-Saltillo), and Cinvestav-Zacatenco. G.M.-P. and R.G.-R. received grant-aided support from Becas CONACYT. F.F.-L., F.L.-V., R.G.C.-M., E.V.-N., S.L.-S., I.A.-B., O.E.R.-R., and A.M.-N. received grant-aided support from Sistema Nacional de Investigadores (SNI), Mexico.

Competing interests The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fernández-Luqueño, F. et al. (2018). Use of Agronanobiotechnology in the Agro-Food Industry to Preserve Environmental Health and Improve the Welfare of Farmers. In: López-Valdez, F., Fernández-Luqueño, F. (eds) Agricultural Nanobiotechnology. Springer, Cham. https://doi.org/10.1007/978-3-319-96719-6_1

Download citation

Publish with us

Policies and ethics