Skip to main content

Techniques Utilised in Materials Growth and Materials and Device Characterisation

  • Chapter
  • First Online:
  • 701 Accesses

Abstract

Further to the semiconductor material and electronic properties discussed in Chap. 2, the evaluation of semiconductor materials can be examined for structural, morphological, compositional, optical and electronic properties to facilitate research towards optimisation. This chapter describes the physics and the basic functionality of X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) spectroscopy, ultraviolet-visible (UV-Vis) spectroscopy and photoelectrochemical (PEC) cell measurement equipment. Current-voltage (I-V) and capacitance-voltage (C-V) techniques were utilised for the evaluation to facilitate research towards solar cell device performance in order to understand the factors affecting the performance of device materials.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. K.L. Chopra, P.D. Paulson, V. Dutta, Thin-film solar cells: an overview. Prog. Photovolt. Res. Appl. 12, 69–92 (2004). https://doi.org/10.1002/pip.541

    Article  Google Scholar 

  2. R.A. Street, Thin-film transistors. Adv. Mater. 21, 2007–2022 (2009). https://doi.org/10.1002/adma.200803211

    Article  Google Scholar 

  3. W. Kern, K.K. Schuegraf, in Handb. Thin Film Depos. Process. Tech. Deposition technologies and applications (Elsevier, New York, 2001), pp. 11–43. https://doi.org/10.1016/B978-081551442-8.50006-7

    Chapter  Google Scholar 

  4. D. Lincot, Electrodeposition of semiconductors. Thin Solid Films 487, 40–48 (2005). https://doi.org/10.1016/j.tsf.2005.01.032

    Article  Google Scholar 

  5. A.A. Ojo, I.M. Dharmadasa, The effect of fluorine doping on the characteristic behaviour of CdTe. J. Electron. Mater. 45, 5728–5738 (2016). https://doi.org/10.1007/s11664-016-4786-9

    Article  Google Scholar 

  6. J.M. Woodcock, A.K. Turner, M.E. Ozsan, J.G. Summers, in Conf. Rec. Twenty-Second IEEE Photovolt. Spec. Conf.—1991. Thin film solar cells based on electrodeposited CdTe (IEEE, 1991), pp. 842–847. https://doi.org/10.1109/PVSC.1991.169328

  7. D. Cunningham, M. Rubcich, D. Skinner, Cadmium telluride PV module manufacturing at BP Solar. Prog. Photovolt. Res. Appl. 10, 159–168 (2002). https://doi.org/10.1002/pip.417

    Article  Google Scholar 

  8. I.M. Dharmadasa, J. Haigh, Strengths and advantages of electrodeposition as a semiconductor growth technique for applications in macroelectronic devices. J. Electrochem. Soc. 153, G47 (2006). https://doi.org/10.1149/1.2128120

    Article  Google Scholar 

  9. A.A. Ojo, I.M. Dharmadasa, Progress in development of graded bandgap thin film solar cells with electroplated materials. J. Mater. Sci. Mater. Electron. 28, 6359–6365 (2017). https://doi.org/10.1007/s10854-017-6366-z

    Article  Google Scholar 

  10. I.M. Dharmadasa, Advances in Thin-Film Solar Cells (Pan Stanford, Singapore, 2013)

    Google Scholar 

  11. A.A. Ojo, H.I. Salim, O.I. Olusola, M.L. Madugu, I.M. Dharmadasa, Effect of thickness: a case study of electrodeposited CdS in CdS/CdTe based photovoltaic devices. J. Mater. Sci. Mater. Electron. 28, 3254–3263 (2017). https://doi.org/10.1007/s10854-016-5916-0

    Article  Google Scholar 

  12. M.P.R. Panicker, M. Knaster, F.A. Kroger, Cathodic deposition of CdTe from aqueous electrolytes. J. Electrochem. Soc. 125, 566 (1978). https://doi.org/10.1149/1.2131499

    Article  Google Scholar 

  13. J. McHardy, F. Ludwig, Electrochemistry of semiconductors and electronics: processes and devices (Noyes Publications, Park Ridge, 1992). https://books.google.co.uk/books?id=cSEt5W3vmdIC

    Google Scholar 

  14. A.A. Ojo, I.M. Dharmadasa, 15.3% Efficient graded bandgap solar cells fabricated using electroplated CdS and CdTe thin films. Sol. Energy 136, 10–14 (2016). https://doi.org/10.1016/j.solener.2016.06.067

    Article  Google Scholar 

  15. I.M. Dharmadasa, P. Bingham, O.K. Echendu, H.I. Salim, T. Druffel, R. Dharmadasa, G. Sumanasekera, R. Dharmasena, M.B. Dergacheva, K. Mit, K. Urazov, L. Bowen, M. Walls, A. Abbas, Fabrication of CdS/CdTe-based thin film solar cells using an electrochemical technique. Coatings. 4, 380–415 (2014). https://doi.org/10.3390/coatings4030380

    Article  Google Scholar 

  16. J. Pandey, Solar cell harvesting: green renewable technology of future introduction. Int. J. Adv. Res. Eng. Appl. Sci. 4, 93 (2015). ISSN: 2278–6252

    Google Scholar 

  17. S. Dennison, Dopant and impurity effects in electrodeposited CdS/CdTe thin films for photovoltaic applications. J. Mater. Chem. 4, 41 (1994). https://doi.org/10.1039/jm9940400041

    Article  Google Scholar 

  18. K. Zanio, Semiconductors and Semimetals (Academic Press, New York, 1978). http://shu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV3JCsIwEB1cEAQPrrgV-gNKmyZNPYvFu94l6bQ3K1j_HydDXXA5Zg7DJJB5me0FIBLrYPXhE8LEUZ8lRggjsgBlgBuptSqw0Chzrsy80Rg848ZXCuObQZ_iCKmCyN3HJjQJON2LqOaiYzdM7pnQiml0hCaUCiNVM-481sn7lwYMKGkfWm7IYACNvBxCh9sws2o

    Google Scholar 

  19. E.A. Meulenkamp, L.M. Peter, Mechanistic aspects of the electrodeposition of stoichiometric CdTe on semiconductor substrates. J. Chem. Soc. Trans. 92, 4077–4082 (1996). https://doi.org/10.1039/ft9969204077

    Article  Google Scholar 

  20. A.Y. Shenouda, E.S.M. El Sayed, Electrodeposition, characterization and photo electrochemical properties of CdSe and CdTe. Ain Shams Eng. J. 6, 341–346 (2014). https://doi.org/10.1016/j.asej.2014.07.010

    Article  Google Scholar 

  21. H.Y.R. Atapattu, D.S.M. De Silva, K.A.S. Pathiratne, I.M. Dharmadasa, Effect of stirring rate of electrolyte on properties of electrodeposited CdS layers. J. Mater. Sci. Mater. Electron. 27, 5415–5421 (2016). https://doi.org/10.1007/s10854-016-4443-3

    Article  Google Scholar 

  22. P.T. Kissinger, W.R. Heineman, Cyclic voltammetry. J. Chem. Educ. 60, 702 (1983). https://doi.org/10.1021/ed060p702

    Article  Google Scholar 

  23. C.W. Siders, Detection of nonthermal melting by ultrafast X-ray diffraction. Science 286, 1340–1342 (1999). https://doi.org/10.1126/science.286.5443.1340

    Article  Google Scholar 

  24. A. Monshi, Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD. World J. Nano Sci. Eng. 2, 154–160 (2012). https://doi.org/10.4236/wjnse.2012.23020.

    Article  Google Scholar 

  25. H.J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N.J. Fullwood, B. Gardner, P.L. Martin-Hirsch, M.J. Walsh, M.R. Mcainsh, N. Stone, F.L. Martin, Using Raman spectroscopy to characterise biological materials. Nat. Protoc. 11, 664–687 (2016). https://doi.org/10.1038/nprot.2016.036

    Article  Google Scholar 

  26. A.K. Yadav, P. Singh, A review of the structures of oxide glasses by Raman spectroscopy. RSC Adv. 5, 67583–67609 (2015). https://doi.org/10.1039/C5RA13043C

    Article  Google Scholar 

  27. W.A. Mackie, G.G. Magera, Defined emission area and custom thermal electron sources. J. Vac. Sci. Technol. B, Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 29, 06F601 (2011). https://doi.org/10.1116/1.3656350

    Article  Google Scholar 

  28. D.N. Leonard, G.W. Chandler, S. Seraphin, in Charact. Mater.. Scanning electron microscopy (Wiley, Hoboken, 2012), pp. 1721–1735. https://doi.org/10.1002/0471266965.com081.pub2.

    Chapter  Google Scholar 

  29. D.A. Moncrieff, P.R. Barker, Secondary electron emission in the scanning electron microscope. Scanning 1, 195–197 (1978). https://doi.org/10.1002/sca.4950010307

    Article  Google Scholar 

  30. K. Kanaya, S. Okayama, Penetration and energy-loss theory of electrons in solid targets. J. Phys. D. Appl. Phys. 5, 308 (1972). https://doi.org/10.1088/0022-3727/5/1/308

    Article  Google Scholar 

  31. P.J. Statham, Limitations to accuracy in extracting characteristic line intensities from x-ray spectra. J. Res. Natl. Inst. Stand. Technol. 107, 531 (2002). https://doi.org/10.6028/jres.107.045

    Article  Google Scholar 

  32. H.C. Allen, T. Brauers, B.J. Finlayson-Pitts, Illustration of deviations in the Beer-Lambert law in an instrumental analysis laboratory: measuring atmospheric pollutants by differential optical absorption spectrometry. J. Chem. Educ. 74, 1459 (1997). https://doi.org/10.1021/ed074p1459

    Article  Google Scholar 

  33. J. Tauc, Optical properties and electronic structure of amorphous Ge and Si. Mater. Res. Bull. 3, 37–46 (1968). https://doi.org/10.1016/0025-5408(68)90023-8

    Article  Google Scholar 

  34. J. Han, C. Spanheimer, G. Haindl, G. Fu, V. Krishnakumar, J. Schaffner, C. Fan, K. Zhao, A. Klein, W. Jaegermann, Optimized chemical bath deposited CdS layers for the improvement of CdTe solar cells. Sol. Energy Mater. Sol. Cells 95, 816–820 (2011). https://doi.org/10.1016/j.solmat.2010.10.027.

    Article  Google Scholar 

  35. A. Bosio, N. Romeo, S. Mazzamuto, V. Canevari, Polycrystalline CdTe thin films for photovoltaic applications. Prog. Cryst. Growth Charact. Mater. 52, 247–279 (2006). https://doi.org/10.1016/j.pcrysgrow.2006.09.001

    Article  Google Scholar 

  36. D.T.F. Marple, Optical absorption edge in CdTe: experimental. Phys. Rev. 150, 728–734 (1966). https://doi.org/10.1103/PhysRev.150.728

    Article  Google Scholar 

  37. V.Y. Roshko, L. a Kosyachenko, E.V. Grushko, Theoretical analysis of optical losses in CdS/CdTe solar cells. Acta Phys. Pol. A. 120, 954–956 (2011). http://przyrbwn.icm.edu.pl/APP/PDF/120/a120z5p39.pdf

    Article  Google Scholar 

  38. H.A. Mohamed, Dependence of efficiency of thin-film CdS/CdTe solar cell on optical and recombination losses. J. Appl. Phys. 113, 093105 (2013). https://doi.org/10.1063/1.4794201

    Article  Google Scholar 

  39. H.A. Mohamed, Influence of the optical and recombination losses on the efficiency of CdS/CdTe solar cell at ultrathin absorber layer. Can. J. Phys. 92, 1350–1355 (2014). https://doi.org/10.1139/cjp-2013-0477

    Article  Google Scholar 

  40. J.E. Granata, J.R. Sites, in Conf. Rec. Twenty Fifth IEEE Photovolt. Spec. Conf.. Effect of CdS thickness on CdS/CdTe quantum efficiency, vol 2000 (1996), pp. 853–856. https://doi.org/10.1109/PVSC.1996.564262

    Chapter  Google Scholar 

  41. J.S. Lee, Y.K. Jun, H.B. Im, Effects of CdS film thickness on the photovoltaic properties of sintered CdS / CdTe solar cells. J. Electrochem. Soc. 134, 248–251 (1987). https://doi.org/10.1149/1.2100417.

    Article  Google Scholar 

  42. P.M. Kaminski, F. Lisco, J.M. Walls, Multilayer broadband antireflective coatings for more efficient thin film CdTe solar cells. IEEE J. Photovolt. 4, 452–456 (2014). https://doi.org/10.1109/JPHOTOV.2013.2284064

    Article  Google Scholar 

  43. K. Rajeshwar, in Encycl. Electrochem.. Fundamentals of semiconductor electrochemistry and photoelectrochemistry (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007), pp. 1–51. https://doi.org/10.1002/9783527610426.bard060001

    Chapter  Google Scholar 

  44. S.M. Sze, K.K. Ng, Physics of Semiconductor Devices (Wiley, Hoboken, 2006). https://doi.org/10.1002/0470068329

    Book  Google Scholar 

  45. M. Chegaar, A. Hamzaoui, A. Namoda, P. Petit, M. Aillerie, A. Herguth, Effect of illumination intensity on solar cells parameters. Energy Procedia 36, 722–729 (2013). https://doi.org/10.1016/j.egypro.2013.07.084

    Article  Google Scholar 

  46. T. Soga, Nanostructured materials for solar energy conversion, vol 614 (Elsvier Science, Philadelphia, 2006). https://www.elsevier.com/books/nanostructured-materials-for-solar-energy-conversion/soga/978-0-444-52844-5

    Google Scholar 

  47. M. Dadu, A. Kapoor, K.N. Tripathi, Effect of operating current dependent series resistance on the fill factor of a solar cell. Sol. Energy Mater. Sol. Cells 71, 213–218 (2002). https://doi.org/10.1016/S0927-0248(01)00059-9

    Article  Google Scholar 

  48. E.H. Rhoderick, Metal-semiconductor contacts. IEE Proc. I Solid State Electron Devices. 129, 1 (1982). https://doi.org/10.1049/ip-i-1.1982.0001

    Article  Google Scholar 

  49. J. Verschraegen, M. Burgelman, J. Penndorf, Temperature dependence of the diode ideality factor in CuInS2-on-Cu-tape solar cells. Thin Solid Films 480–481, 307–311 (2005). https://doi.org/10.1016/j.tsf.2004.11.006

    Article  Google Scholar 

  50. S. Geyer, V.J. Porter, J.E. Halpert, T.S. Mentzel, M.A. Kastner, M.G. Bawendi, Charge transport in mixed CdSe and CdTe colloidal nanocrystal films. Phys. Rev. B: Condens. Matter Mater. Phys. 82 (2010). https://doi.org/10.1103/PhysRevB.82.155201

  51. O. Madelung, U. Rössler, M. Schulz (eds.), in II-VI I-VII Compd. Semimagn. Compd. Cadmium telluride (CdTe) effective masses (Springer, Berlin, 1999), pp. 1–2. https://doi.org/10.1007/10681719_625

  52. G.G. Roberts, M.C. Petty, I.M. Dharmadasa, Photovoltaic properties of cadmium-telluride/Langmuir-film solar cells. IEEE Proc. I Solid State Electron Devices. 128, 197 (1981). https://doi.org/10.1049/ip-i-1.1981.0049

    Article  Google Scholar 

  53. T.Y. Chang, C.L. Chang, H.Y. Lee, P.T. Lee, A metal-insulator-semiconductor solar cell with high open-circuit voltage using a stacking structure. IEEE Electron Device Lett. 31, 1419–1421 (2010). https://doi.org/10.1109/LED.2010.2073437

    Article  Google Scholar 

  54. S. Chander, A. Purohit, A. Sharma, S.P. Nehra, M.S. Dhaka, Impact of temperature on performance of series and parallel connected mono-crystalline silicon solar cells. Energy Reports. 1, 175–180 (2015). https://doi.org/10.1016/j.egyr.2015.09.001

    Article  Google Scholar 

  55. W.L. Liu, Y.L. Chen, A.A. Balandin, K.L. Wang, Capacitance–voltage spectroscopy of trapping states in GaN/AlGaN heterostructure field-effect transistors. J. Nanoelectron. Optoelectron. 1, 258–263 (2006). https://doi.org/10.1166/jno.2006.212.

    Article  Google Scholar 

  56. S.W. Lin, J. Du, C. Balocco, Q.P. Wang, A.M. Song, Effects of bias cooling on charge states in heterostructures embedding self-assembled quantum dots. Phys. Rev. B 78, 115314 (2008). https://doi.org/10.1103/PhysRevB.78.115314

    Article  Google Scholar 

  57. I. Strzalkowski, S. Joshi, C.R. Crowell, Dielectric constant and its temperature dependence for GaAs, CdTe, and ZnSe. Appl. Phys. Lett. 28, 350–352 (1976). https://doi.org/10.1063/1.88755

    Article  Google Scholar 

  58. D. Neamen, Semiconductor physics and devices. Mater. Today 9, 57 (2006). https://doi.org/10.1016/S1369-7021(06)71498-5

    Article  Google Scholar 

  59. N.B. Chaure, S. Bordas, A.P. Samantilleke, S.N. Chaure, J. Haigh, I.M. Dharmadasa, Investigation of electronic quality of chemical bath deposited cadmium sulphide layers used in thin film photovoltaic solar cells. Thin Solid Films 437, 10–17 (2003). https://doi.org/10.1016/S0040-6090(03)00671-0

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ojo, A.A., Cranton, W.M., Dharmadasa, I.M. (2019). Techniques Utilised in Materials Growth and Materials and Device Characterisation. In: Next Generation Multilayer Graded Bandgap Solar Cells. Springer, Cham. https://doi.org/10.1007/978-3-319-96667-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96667-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96666-3

  • Online ISBN: 978-3-319-96667-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics