Skip to main content

Immersogeometric Analysis of Bioprosthetic Heart Valves, Using the Dynamic Augmented Lagrangian Method

  • Chapter
  • First Online:
Frontiers in Computational Fluid-Structure Interaction and Flow Simulation

Abstract

In the mid-2010s, we began applying a combination of isogeometric analysis and immersed boundary methods to the problem of bioprosthetic heart valve (BHV) fluid–structure interaction (FSI). This chapter reviews how our research on BHV FSI (1) crystallized the emerging concept of immersogeometric analysis, (2) introduced a new semi-implicit numerical method for weakly enforcing constraints in time dependent problems, which we refer to as the dynamic augmented Lagrangian approach, and (3) clarified the important role of mass conservation in immersed FSI analysis. We illustrate these contributions with selected numerical results and discuss future improvements to, and applications of, the computational FSI techniques we have developed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In practice, immersogeometric methods must frequently approximate integrals over the domain geometry, which may be considered a type of geometrical approximation [76, Sections 4.3 and 4.4], but this is conceptually distinct from the direct alteration of domain geometry that occurs in traditional mesh generation.

  2. 2.

    The word “immersogeometric” was originally coined in 2014 by T. J. R. Hughes, while traveling in Italy; it is derived from the Italian word immerso, meaning “immersed.”

  3. 3.

    We use of the term “VMS” in this chapter to refer to the specific VMS formulation explained in Sect. 3.1.1, applied to equal-order pressure–velocity discretizations. Our choice of terminology should not be taken to mean that the concept of VMS analysis is incompatible with div-conforming B-splines, which is demonstrably [82] not true.

  4. 4.

    For readers unfamiliar with the construction and basic properties of B-splines, a comprehensive explanation can be found in [88].

References

  1. F. J. Schoen and R. J. Levy. Calcification of tissue heart valve substitutes: progress toward understanding and prevention. Ann. Thorac. Surg., 79(3):1072–1080, 2005.

    Article  Google Scholar 

  2. P. Pibarot and J. G. Dumesnil. Prosthetic heart valves: selection of the optimal prosthesis and long-term management. Circulation, 119(7):1034–1048, 2009.

    Article  Google Scholar 

  3. J. S. Soares, K. R. Feaver, W. Zhang, D. Kamensky, A. Aggarwal, and M. S. Sacks. Biomechanical behavior of bioprosthetic heart valve heterograft tissues: Characterization, simulation, and performance. Cardiovascular Engineering and Technology, 7(4):309–351, 2016.

    Article  Google Scholar 

  4. M. J. Thubrikar, J. D. Deck, J. Aouad, and S. P. Nolan. Role of mechanical stress in calcification of aortic bioprosthetic valves. J. Thorac. Cardiovasc. Surg., 86(1):115–125, Jul 1983.

    Google Scholar 

  5. R. F. Siddiqui, J. R. Abraham, and J. Butany. Bioprosthetic heart valves: modes of failure. Histopathology, 55:135–144, 2009.

    Article  Google Scholar 

  6. W. Sun, A. Abad, and M. S. Sacks. Simulated bioprosthetic heart valve deformation under quasi-static loading. Journal of Biomechanical Engineering, 127(6):905–914, 2005.

    Article  Google Scholar 

  7. F. Auricchio, M. Conti, A. Ferrara, S. Morganti, and A. Reali. Patient-specific simulation of a stentless aortic valve implant: the impact of fibres on leaflet performance. Computer Methods in Biomechanics and Biomedical Engineering, 17(3):277–285, 2014.

    Article  Google Scholar 

  8. H. Kim, J. Lu, M. S. Sacks, and K. B. Chandran. Dynamic simulation of bioprosthetic heart valves using a stress resultant shell model. Annals of Biomedical Engineering, 36(2):262–275, 2008.

    Article  Google Scholar 

  9. T. J. R. Hughes, W. K. Liu, and T. K. Zimmermann. Lagrangian–Eulerian finite element formulation for incompressible viscous flows. Computer Methods in Applied Mechanics and Engineering, 29:329–349, 1981.

    Article  MathSciNet  MATH  Google Scholar 

  10. J. Donea, S. Giuliani, and J. P. Halleux. An arbitrary Lagrangian–Eulerian finite element method for transient dynamic fluid–structure interactions. Computer Methods in Applied Mechanics and Engineering, 33:689–723, 1982.

    Article  MATH  Google Scholar 

  11. J. Donea, A. Huerta, J.-P. Ponthot, and A. Rodriguez-Ferran. Arbitrary Lagrangian–Eulerian methods. In Encyclopedia of Computational Mechanics, Volume 3: Fluids, chapter 14. John Wiley & Sons, 2004.

    Google Scholar 

  12. T. E. Tezduyar, M. Behr, and J. Liou. A new strategy for finite element computations involving moving boundaries and interfaces – the deforming-spatial-domain/space–time procedure: I. The concept and the preliminary numerical tests. Computer Methods in Applied Mechanics and Engineering, 94(3):339–351, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  13. T. E. Tezduyar, M. Behr, S. Mittal, and J. Liou. A new strategy for finite element computations involving moving boundaries and interfaces – the deforming-spatial-domain/space–time procedure: II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Computer Methods in Applied Mechanics and Engineering, 94(3):353–371, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  14. A. A. Johnson and T. E. Tezduyar. Parallel computation of incompressible flows with complex geometries. International Journal for Numerical Methods in Fluids, 24:1321–1340, 1997.

    Article  MATH  Google Scholar 

  15. T. Tezduyar, S. Aliabadi, M. Behr, A. Johnson, and S. Mittal. Massively parallel finite element computation of 3D flows – mesh update strategies in computation of moving boundaries and interfaces. In A. Ecer, J. Hauser, P. Leca, and J. Periaux, editors, Parallel Computational Fluid Dynamics – New Trends and Advances, pages 21–30. Elsevier, 1995.

    Google Scholar 

  16. A. A. Johnson and T. E. Tezduyar. 3D simulation of fluid-particle interactions with the number of particles reaching 100. Computer Methods in Applied Mechanics and Engineering, 145:301–321, 1997.

    Article  MATH  Google Scholar 

  17. A. A. Johnson and T. E. Tezduyar. Advanced mesh generation and update methods for 3D flow simulations. Computational Mechanics, 23:130–143, 1999.

    Article  MATH  Google Scholar 

  18. K. Takizawa, T. E. Tezduyar, A. Buscher, and S. Asada. Space–time interface-tracking with topology change (ST-TC). Computational Mechanics, 54:955–971, 2014.

    Article  MathSciNet  MATH  Google Scholar 

  19. K. Takizawa, T. E. Tezduyar, A. Buscher, and S. Asada. Space–time fluid mechanics computation of heart valve models. Computational Mechanics, 54:973–986, 2014.

    Article  MATH  Google Scholar 

  20. K. Takizawa, T. E. Tezduyar, T. Terahara, and T. Sasaki. Heart valve flow computation with the integrated space–time VMS, slip interface, topology change and isogeometric discretization methods. Computers & Fluids, 158:176–188, 2017.

    Article  MathSciNet  MATH  Google Scholar 

  21. K. Takizawa, T. E. Tezduyar, T. Terahara, and T. Sasaki. Heart valve flow computation with the space–time slip interface topology change (ST-SI-TC) method and isogeometric analysis (IGA). In P. Wriggers and T. Lenarz, editors, Biomedical Technology: Modeling, Experiments and Simulation, Lecture Notes in Applied and Computational Mechanics, pages 77–99. Springer International Publishing, 2018.

    Google Scholar 

  22. C. S. Peskin. Flow patterns around heart valves: A numerical method. Journal of Computational Physics, 10(2):252–271, 1972.

    Article  MathSciNet  MATH  Google Scholar 

  23. R. Mittal and G. Iaccarino. Immersed boundary methods. Annual Review of Fluid Mechanics, 37:239–261, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  24. F. Sotiropoulos and X. Yang. Immersed boundary methods for simulating fluid–structure interaction. Progress in Aerospace Sciences, 65:1–21, 2014.

    Article  Google Scholar 

  25. D. Schillinger, L. Dedè, M. A. Scott, J. A. Evans, M. J. Borden, E. Rank, and T. J. R. Hughes. An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Computer Methods in Applied Mechanics and Engineering, 249–252:116–150, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  26. T. E. Tezduyar. Computation of moving boundaries and interfaces and stabilization parameters. International Journal for Numerical Methods in Fluids, 43:555–575, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  27. K. Takizawa, C. Moorman, S. Wright, J. Christopher, and T. E. Tezduyar. Wall shear stress calculations in space–time finite element computation of arterial fluid–structure interactions. Computational Mechanics, 46:31–41, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  28. J. de Hart. Fluid–Structure Interaction in the Aortic Heart Valve: a three-dimensional computational analysis. Ph.D. thesis, Technische Universiteit Eindhoven, Eindhoven, Netherlands, 2002.

    Google Scholar 

  29. J. De Hart, G. W. M. Peters, P. J. G. Schreurs, and F. P. T. Baaijens. A three-dimensional computational analysis of fluid–structure interaction in the aortic valve. Journal of Biomechanics, 36:103–112, 2003.

    Article  Google Scholar 

  30. J. De Hart, F. P. T. Baaijens, G. W. M. Peters, and P. J. G. Schreurs. A computational fluid–structure interaction analysis of a fiber-reinforced stentless aortic valve. Journal of Biomechanics, 36:699–712, 2003.

    Article  Google Scholar 

  31. R. van Loon. A 3D method for modelling the fluid–structure interaction of heart valves. Ph.D. thesis, Technische Universiteit Eindhoven, Eindhoven, Netherlands, 2005.

    Google Scholar 

  32. R. van Loon, P. D. Anderson, and F. N. van de Vosse. A fluid–structure interaction method with solid-rigid contact for heart valve dynamics. Journal of Computational Physics, 217:806–823, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  33. R. van Loon. Towards computational modelling of aortic stenosis. International Journal for Numerical Methods in Biomedical Engineering, 26:405–420, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  34. F. P. T. Baaijens. A fictitious domain/mortar element method for fluid–structure interaction. International Journal for Numerical Methods in Fluids, 35(7):743–761, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  35. B. E. Griffith. Immersed boundary model of aortic heart valve dynamics with physiological driving and loading conditions. International Journal for Numerical Methods in Biomedical Engineering, 28(3):317–345, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  36. I. Borazjani. Fluid–structure interaction, immersed boundary-finite element method simulations of bio-prosthetic heart valves. Computer Methods in Applied Mechanics and Engineering, 257:103–116, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  37. L. Ge and F. Sotiropoulos. A numerical method for solving the 3D unsteady incompressible Navier–Stokes equations in curvilinear domains with complex immersed boundaries. Journal of Computational Physics, 225(2):1782–1809, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  38. I. Borazjani, L. Ge, and F. Sotiropoulos. Curvilinear immersed boundary method for simulating fluid structure interaction with complex 3D rigid bodies. Journal of Computational Physics, 227(16):7587–7620, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  39. A. Gilmanov, T. B. Le, and F. Sotiropoulos. A numerical approach for simulating fluid structure interaction of flexible thin shells undergoing arbitrarily large deformations in complex domains. Journal of Computational Physics, 300:814–843, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  40. A. Gilmanov and F. Sotiropoulos. Comparative hemodynamics in an aorta with bicuspid and trileaflet valves. Theoretical and Computational Fluid Dynamics, 30(1):67–85, 2016.

    Article  Google Scholar 

  41. LS-DYNA Finite Element Software: Livermore Software Technology Corp. http://www.lstc.com/products/ls-dyna. Accessed 30 April 2016.

  42. G. G. Chew, I. C. Howard, and E. A. Patterson. Simulation of damage in a porcine prosthetic heart valve. Journal of Medical Engineering & Technology, 23(5):178–189, 1999.

    Article  Google Scholar 

  43. C. J. Carmody, G. Burriesci, I. C. Howard, and E. A. Patterson. An approach to the simulation of fluid–structure interaction in the aortic valve. Journal of Biomechanics, 39:158–169, 2006.

    Article  Google Scholar 

  44. F. Sturla, E. Votta, M. Stevanella, C. A. Conti, and A. Redaelli. Impact of modeling fluid–structure interaction in the computational analysis of aortic root biomechanics. Medical Engineering and Physics, 35:1721–1730, 2013.

    Article  Google Scholar 

  45. W. Wu, D. Pott, B. Mazza, T. Sironi, E. Dordoni, C. Chiastra, L. Petrini, G. Pennati, G. Dubini, U. Steinseifer, S. Sonntag, M. Kuetting, and F. Migliavacca. Fluid–structure interaction model of a percutaneous aortic valve: Comparison with an in vitro test and feasibility study in a patient-specific case. Annals of Biomedical Engineering, 44(2):590–603, 2016.

    Article  Google Scholar 

  46. R. Courant, K. Friedrichs, and H. Lewy. Über die partiellen Differenzengleichungen der mathematischen Physik. Mathematische Annalen, 100(1):32–74, 1928.

    Article  MathSciNet  MATH  Google Scholar 

  47. R. Courant, K. Friedrichs, and H. Lewy. On the partial difference equations of mathematical physics. IBM J. Res. Develop., 11:215–234, 1967.

    Article  MathSciNet  MATH  Google Scholar 

  48. A. E. J. Bogaers, S. Kok, B. D. Reddy, and T. Franz. Quasi-Newton methods for implicit black-box FSI coupling. Computer Methods in Applied Mechanics and Engineering, 279(0):113–132, 2014.

    Article  MathSciNet  MATH  Google Scholar 

  49. E. H. van Brummelen. Added mass effects of compressible and incompressible flows in fluid–structure interaction. Journal of Applied Mechanics, 76:021206, 2009.

    Article  Google Scholar 

  50. C. Michler, H. van Brummelen, and R. de Borst. An investigation of interface-GMRES(R) for fluid–structure interaction problems with flutter and divergence. Computational Mechanics, 47(1):17–29, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  51. M. Astorino, J.-F. Gerbeau, O. Pantz, and K.-F. Traoré. Fluid–structure interaction and multi-body contact: Application to aortic valves. Computer Methods in Applied Mechanics and Engineering, 198:3603–3612, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  52. K. Cao, M. Bukač, and P. Sucosky. Three-dimensional macro-scale assessment of regional and temporal wall shear stress characteristics on aortic valve leaflets. Computer Methods in Biomechanics and Biomedical Engineering, 19(6):603–613, 2016.

    Article  Google Scholar 

  53. T. J. R. Hughes, J. A. Cottrell, and Y. Bazilevs. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Computer Methods in Applied Mechanics and Engineering, 194:4135–4195, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  54. J. A. Evans, Y. Bazilevs, I. Babus̆ka, and T. J. R. Hughes. n-Widths, sup-infs, and optimality ratios for the k-version of the isogeometric finite element method. Computer Methods in Applied Mechanics and Engineering, 198:1726–1741, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  55. A. Buffa, G. Sangalli, and R. Vázquez. Isogeometric analysis in electromagnetics: B-splines approximation. Computer Methods in Applied Mechanics and Engineering, 199(17–20):1143–1152, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  56. A. Buffa, J. Rivas, G. Sangalli, and R. Vásquez. Isogeometric discrete differential forms in three dimensions. SIAM Journal on Numerical Analysis, 49(2):814–844, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  57. I. Akkerman, Y. Bazilevs, V. M. Calo, T. J. R. Hughes, and S. Hulshoff. The role of continuity in residual-based variational multiscale modeling of turbulence. Computational Mechanics, 41:371–378, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  58. Y. Bazilevs, V. M. Calo, J. A. Cottrel, T. J. R. Hughes, A. Reali, and G. Scovazzi. Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Computer Methods in Applied Mechanics and Engineering, 197:173–201, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  59. J. A. Evans. Divergence-free B-spline Discretizations for Viscous Incompressible Flows. Ph.D. thesis, University of Texas at Austin, Austin, Texas, United States, 2011.

    Google Scholar 

  60. J. A. Evans and T. J. R. Hughes. Isogeometric divergence-conforming B-splines for the steady Navier–Stokes equations. Mathematical Models and Methods in Applied Sciences, 23(08):1421–1478, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  61. J. Kiendl, K.-U. Bletzinger, J. Linhard, and R. Wüchner. Isogeometric shell analysis with Kirchhoff–Love elements. Computer Methods in Applied Mechanics and Engineering, 198:3902–3914, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  62. J. Kiendl. Isogeometric Analysis and Shape Optimal Design of Shell Structures. PhD thesis, Lehrstuhl für Statik, Technische Universität München, 2011.

    Google Scholar 

  63. N. Nguyen-Thanh, J. Kiendl, H. Nguyen-Xuan, R. Wüchner, K.U. Bletzinger, Y. Bazilevs, and T. Rabczuk. Rotation-free isogeometric thin shell analysis using PHT-splines. Computer Methods in Applied Mechanics and Engineering, 200:3410–3424, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  64. J. Kiendl, M.-C. Hsu, M. C. H. Wu, and A. Reali. Isogeometric Kirchhoff–Love shell formulations for general hyperelastic materials. Computer Methods in Applied Mechanics and Engineering, 291:280–303, 2015.

    Article  MathSciNet  Google Scholar 

  65. S. Lipton, J. A. Evans, Y. Bazilevs, T. Elguedj, and T. J. R. Hughes. Robustness of isogeometric structural discretizations under severe mesh distortion. Computer Methods in Applied Mechanics and Engineering, 199:357–373, 2010.

    Article  MATH  Google Scholar 

  66. L. De Lorenzis, İ. Temizer, P. Wriggers, and G. Zavarise. A large deformation frictional contact formulation using NURBS-based isogeometric analysis. International Journal for Numerical Methods in Engineering, 87:1278–1300, 2011.

    MathSciNet  MATH  Google Scholar 

  67. S. Morganti, F. Auricchio, D. J. Benson, F. I. Gambarin, S. Hartmann, T. J. R. Hughes, and A. Reali. Patient-specific isogeometric structural analysis of aortic valve closure. Computer Methods in Applied Mechanics and Engineering, 284:508–520, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  68. M. A. Scott. T-splines as a Design-Through-Analysis Technology. PhD thesis, The University of Texas at Austin, August 2011.

    Google Scholar 

  69. T. W. Sederberg, D.L. Cardon, G.T. Finnigan, N.S. North, J. Zheng, and T. Lyche. T-spline simplification and local refinement. ACM Transactions on Graphics, 23(3):276–283, 2004.

    Article  Google Scholar 

  70. T.W. Sederberg, J. Zheng, A. Bakenov, and A. Nasri. T-splines and T-NURCCS. ACM Transactions on Graphics, 22(3):477–484, 2003.

    Article  Google Scholar 

  71. E. Rank, M. Ruess, S. Kollmannsberger, D. Schillinger, and A. Düster. Geometric modeling, isogeometric analysis and the finite cell method. Computer Methods in Applied Mechanics and Engineering, 249–252:104–115, 2012.

    Article  MATH  Google Scholar 

  72. M. Ruess, D. Schillinger, Y. Bazilevs, V. Varduhn, and E. Rank. Weakly enforced essential boundary conditions for NURBS-embedded and trimmed NURBS geometries on the basis of the finite cell method. International Journal for Numerical Methods in Engineering, 95:811–846, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  73. M. Ruess, D. Schillinger, A. I. Özcan, and E. Rank. Weak coupling for isogeometric analysis of non-matching and trimmed multi-patch geometries. Computer Methods in Applied Mechanics and Engineering, 269:46–731, 2014.

    Article  MathSciNet  MATH  Google Scholar 

  74. D. Schillinger and M. Ruess. The Finite Cell Method: A review in the context of higher-order structural analysis of CAD and image-based geometric models. Archives of Computational Methods in Engineering, 22(3):391–455, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  75. D. Schillinger, M. Ruess, N. Zander, Y. Bazilevs, A. Düster, and E. Rank. Small and large deformation analysis with the p- and B-spline versions of the Finite Cell Method. Computational Mechanics, 50(4):445–478, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  76. G. Strang and G. J. Fix. An Analysis of the Finite Element Method. Prentice-Hall, Englewood Cliffs, New Jersey, 1973.

    Google Scholar 

  77. D. Kamensky, M.-C. Hsu, D. Schillinger, J. A. Evans, A. Aggarwal, Y. Bazilevs, M. S. Sacks, and T. J. R. Hughes. An immersogeometric variational framework for fluid–structure interaction: Application to bioprosthetic heart valves. Computer Methods in Applied Mechanics and Engineering, 284:1005–1053, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  78. M. Hillairet. Lack of collision between solid bodies in a 2D incompressible viscous flow. Communications in Partial Differential Equations, 32(9):1345–1371, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  79. Y. Bazilevs, M.-C. Hsu, and M. A. Scott. Isogeometric fluid–structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines. Computer Methods in Applied Mechanics and Engineering, 249–252:28–41, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  80. M. Esmaily-Moghadam, Y. Bazilevs, T.-Y. Hsia, I. E. Vignon-Clementel, A. L. Marsden, and Modeling of Congenital Hearts Alliance (MOCHA). A comparison of outlet boundary treatments for prevention of backflow divergence with relevance to blood flow simulations. Computational Mechanics, 48:277–291, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  81. G. A. Holzapfel. Nonlinear Solid Mechanics: A Continuum Approach for Engineering. Wiley, Chichester, 2000.

    MATH  Google Scholar 

  82. T. M. van Opstal, J. Yan, C. Coley, J. A. Evans, T. Kvamsdal, and Y. Bazilevs. Isogeometric divergence-conforming variational multiscale formulation of incompressible turbulent flows. Computer Methods in Applied Mechanics and Engineering, 316:859–879, 2017.

    Article  MathSciNet  Google Scholar 

  83. T. J. R. Hughes, G. R. Feijóo, L. Mazzei, and J. B. Quincy. The variational multiscale method–A paradigm for computational mechanics. Computer Methods in Applied Mechanics and Engineering, 166:3–24, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  84. S. C. Brenner and L. R. Scott. The Mathematical Theory of Finite Element Methods, 3rd ed. Springer, 2008.

    Google Scholar 

  85. J. A. Evans and T. J. R. Hughes. Explicit trace inequalities for isogeometric analysis and parametric hexahedral finite elements. Numerische Mathematik, 123:259–290, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  86. D. Kamensky, M.-C. Hsu, Y. Yu, J. A. Evans, M. S. Sacks, and T. J. R. Hughes. Immersogeometric cardiovascular fluid–structure interaction analysis with divergence-conforming B-splines. Computer Methods in Applied Mechanics and Engineering, 314:408–472, 2017.

    Article  MathSciNet  Google Scholar 

  87. J. A. Evans and T. J. R. Hughes. Isogeometric divergence-conforming B-splines for the unsteady Navier–Stokes equations. Journal of Computational Physics, 241:141–167, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  88. L. Piegl and W. Tiller. The NURBS Book (Monographs in Visual Communication), 2nd ed. Springer-Verlag, New York, 1997.

    Book  MATH  Google Scholar 

  89. A. N. Brooks and T. J. R. Hughes. Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Computer Methods in Applied Mechanics and Engineering, 32:199–259, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  90. Y. Bazilevs and T. J. R. Hughes. Weak imposition of Dirichlet boundary conditions in fluid mechanics. Computers and Fluids, 36:12–26, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  91. Y. Bazilevs, C. Michler, V. M. Calo, and T. J. R. Hughes. Weak Dirichlet boundary conditions for wall-bounded turbulent flows. Computer Methods in Applied Mechanics and Engineering, 196:4853–4862, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  92. Y. Bazilevs, C. Michler, V. M. Calo, and T. J. R. Hughes. Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes. Computer Methods in Applied Mechanics and Engineering, 199:780–790, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  93. Y. Bazilevs and I. Akkerman. Large eddy simulation of turbulent Taylor–Couette flow using isogeometric analysis and the residual–based variational multiscale method. Journal of Computational Physics, 229:3402–3414, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  94. M.-C. Hsu, I. Akkerman, and Y. Bazilevs. Wind turbine aerodynamics using ALE–VMS: Validation and the role of weakly enforced boundary conditions. Computational Mechanics, 50:499–511, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  95. H. J. C. Barbosa and T. J. R. Hughes. The finite element method with Lagrange multipliers on the boundary: circumventing the Babuška-Brezzi condition. Computer Methods in Applied Mechanics and Engineering, 85(1):109–128, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  96. J. Chung and G. M. Hulbert. A time integration algorithm for structural dynamics with improved numerical dissipation: The generalized-α method. Journal of Applied Mechanics, 60:371–75, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  97. Y. Bazilevs, V. M. Calo, T. J. R. Hughes, and Y. Zhang. Isogeometric fluid–structure interaction: theory, algorithms, and computations. Computational Mechanics, 43:3–37, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  98. M. R. Hestenes. Multiplier and gradient methods. Journal of Optimization Theory and Applications, 4(5):303–320, 1969.

    Article  MathSciNet  MATH  Google Scholar 

  99. M. J. D. Powell. A method for nonlinear constraints in minimization problems. In R. Fletcher, editor, Optimization, pages 283–298. Academic Press, New York, 1969.

    Google Scholar 

  100. D. Kamensky, J. A. Evans, and M.-C. Hsu. Stability and conservation properties of collocated constraints in immersogeometric fluid-thin structure interaction analysis. Communications in Computational Physics, 18:1147–1180, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  101. A. J. Chorin. A numerical method for solving incompressible viscous flow problems. Journal of Computational Physics, 135(2):118–125, 1967.

    Article  MATH  Google Scholar 

  102. D. Goldstein, R. Handler, and L. Sirovich. Modeling a no-slip flow boundary with an external force field. Journal of Computational Physics, 105(2):354–366, 1993.

    Article  MATH  Google Scholar 

  103. L. B. Wahlbin. Local behavior in finite element methods. In P. G. Ciarlet and J. L. Lions, editors, Finite Element Methods (Part 1), volume 2 of Handbook of Numerical Analysis, pages 353–522. North-Holland, 1991.

    Google Scholar 

  104. T.-C. Tuan and D. B. Goldstein. Direct numerical simulation of arrays of microjets to manipulate near wall turbulence. Technical Report CAR-96-3, U. T. Austin Center for Aerodynamics Research, 2011.

    Google Scholar 

  105. D. B. Goldstein and T.-C. Tuan. Secondary flow induced by riblets. Journal of Fluid Mechanics, 363:115–151, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  106. D. B. Goldstein. DNS for new applications of surface textures and MEMS actuators for turbulent boundary layer control - FINAL REPORT. Technical Report AFRL-SR-AR-TR-07-0363, AFSOR, 2006.

    Google Scholar 

  107. K. Stephani and D. Goldstein. DNS study of transient disturbance growth and bypass transition due to realistic roughness. In Proceedings of 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition, AIAA Paper 2009-585, Orlando, Florida, 2009.

    Google Scholar 

  108. J. S. Strand and D. B. Goldstein. Direct numerical simulations of riblets to constrain the growth of turbulent spots. Journal of Fluid Mechanics, 668:267–292, 2011.

    Article  MATH  Google Scholar 

  109. C. J. Doolittle, S. D. Drews, and D. B. Goldstein. Near-field flow structures about subcritical surface roughness. Physics of Fluids, 26:124106, 2014.

    Article  Google Scholar 

  110. E. M. Saiki and S. Biringen. Numerical simulation of a cylinder in uniform flow: Application of a virtual boundary method. Journal of Computational Physics, 123(2):450–465, 1996.

    Article  MATH  Google Scholar 

  111. E. M. Saiki and S. Biringen. Spatial numerical simulation of boundary layer transition: effects of a spherical particle. Journal of Fluid Mechanics, 345:133–164, 1997.

    Article  MATH  Google Scholar 

  112. W.-X. Huang, S. J. Shin, and H. J. Sung. Simulation of flexible filaments in a uniform flow by the immersed boundary method. Journal of Computational Physics, 226(2):2206–2228, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  113. S. J. Shin, W.-X. Huang, and H. J. Sung. Assessment of regularized delta functions and feedback forcing schemes for an immersed boundary method. International Journal for Numerical Methods in Fluids, 58(3):263–286, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  114. W.-X. Huang and H. J. Sung. An immersed boundary method for fluid–flexible structure interaction. Computer Methods in Applied Mechanics and Engineering, 198(33–36):2650–2661, 2009.

    Article  MATH  Google Scholar 

  115. J. Ryu, S. G. Park, B. Kim, and H. J. Sung. Flapping dynamics of an inverted flag in a uniform flow. Journal of Fluids and Structures, 57:159–169, 2015.

    Article  Google Scholar 

  116. E. Uddin, W.-X. Huang, and H. J. Sung. Actively flapping tandem flexible flags in a viscous flow. Journal of Fluid Mechanics, 780:120–142, 10 2015.

    Article  MathSciNet  MATH  Google Scholar 

  117. M. Souli, Y. Sofiane, and L. Olovsson. ALE and fluid/structure interaction in LS-DYNA. In Proceedings of Emerging Technology in Fluids, Structures, and Fluid–Structure Interactions. ASME, 2004.

    Google Scholar 

  118. M. Souli, N. Capron, and U. Khan. Fluid structure interaction and airbag ALE for out of position. In Proceedings of the ASME Pressure Vessels and Piping Conference. AMSE, 2005.

    Google Scholar 

  119. M. Souli, J. Wang, I. Do, and C. Hao. ALE and fluid structure interaction in LS-DYNA. In Proceedings of the 8th International LS-DYNA Users Conference, 2011.

    Google Scholar 

  120. A. Haufe, K. Weimar, and U. Göhner. Advanced airbag simulation using fluid-structure-interaction and the Eluerian method in LS-DYNA. In Proceedings of the LS-DYNA Anwenderforum, 2004.

    Google Scholar 

  121. A.J. Gil, A. Arranz Carreño, J. Bonet, and O. Hassan. An enhanced immersed structural potential method for fluid–structure interaction. Journal of Computational Physics, 250:178–205, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  122. C. Hesch, A. J. Gil, A. Arranz Carreño, and J. Bonet. On continuum immersed strategies for fluid-structure interaction. Computer Methods in Applied Mechanics and Engineering, 247–248:51–64, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  123. T. Wick. Flapping and contact FSI computations with the fluid–solid interface-tracking/interface-capturing technique and mesh adaptivity. Computational Mechanics, 53(1):29–43, 2014.

    Article  MathSciNet  MATH  Google Scholar 

  124. C. Kadapa, W. G. Dettmer, and D. Perić. A fictitious domain/distributed Lagrange multiplier based fluid–structure interaction scheme with hierarchical B-spline grids. Computer Methods in Applied Mechanics and Engineering, 301:1–27, 2016.

    Article  MathSciNet  Google Scholar 

  125. T. Tezduyar, S. Aliabadi, M. Behr, A. Johnson, and S. Mittal. Parallel finite-element computation of 3D flows. Computer, 26(10):27–36, 1993.

    Article  MATH  Google Scholar 

  126. A. A. Johnson and T. E. Tezduyar. Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces. Computer Methods in Applied Mechanics and Engineering, 119:73–94, 1994.

    Article  MATH  Google Scholar 

  127. K. Stein, T. Tezduyar, and R. Benney. Mesh moving techniques for fluid–structure interactions with large displacements. Journal of Applied Mechanics, 70:58–63, 2003.

    Article  MATH  Google Scholar 

  128. K. Stein, T. E. Tezduyar, and R. Benney. Automatic mesh update with the solid-extension mesh moving technique. Computer Methods in Applied Mechanics and Engineering, 193:2019–2032, 2004.

    Article  MATH  Google Scholar 

  129. Y. Bazilevs, K. Takizawa, and T. E. Tezduyar. Computational Fluid–Structure Interaction: Methods and Applications. Wiley, Chichester, 2013.

    Book  MATH  Google Scholar 

  130. M.-C. Hsu, D. Kamensky, Y. Bazilevs, M. S. Sacks, and T. J. R. Hughes. Fluid–structure interaction analysis of bioprosthetic heart valves: significance of arterial wall deformation. Computational Mechanics, 54:1055–1071, 2014.

    Article  MathSciNet  MATH  Google Scholar 

  131. T. E. Tezduyar, K. Takizawa, C. Moorman, S. Wright, and J. Christopher. Space–time finite element computation of complex fluid–structure interactions. International Journal for Numerical Methods in Fluids, 64:1201–1218, 2010.

    Article  MATH  Google Scholar 

  132. M.-C. Hsu, D. Kamensky, F. Xu, J. Kiendl, C. Wang, M. C. H. Wu, J. Mineroff, A. Reali, Y. Bazilevs, and M. S. Sacks. Dynamic and fluid–structure interaction simulations of bioprosthetic heart valves using parametric design with T-splines and Fung-type material models. Computational Mechanics, 55:1211–1225, 2015.

    Article  MATH  Google Scholar 

  133. Y. Bazilevs, V. M. Calo, J. A. Cottrell, J. A. Evans, T. J. R. Hughes, S. Lipton, M. A. Scott, and T. W. Sederberg. Isogeometric analysis using T-splines. Computer Methods in Applied Mechanics and Engineering, 199:229–263, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  134. V. L. Huynh, T. Nguyen, H. L. Lam, X. G. Guo, and R. Kafesjian. Cloth-covered stents for tissue heart valves, 2003. US Patent 6,585,766.

    Google Scholar 

  135. D. K. Hildebrand. Design and evaluation of a novel pulsatile bioreactor for biologically active heart valves. Master’s thesis, University of Pittsburgh, Pittsburgh, United States, 2003.

    Google Scholar 

  136. A. K. S. Iyengar, H. Sugimoto, D. B. Smith, and M. S. Sacks. Dynamic in vitro quantification of bioprosthetic heart valve leaflet motion using structured light projection. Annals of Biomedical Engineering, 29(11):963–973, 2001.

    Article  Google Scholar 

  137. M. C. H. Wu, D. Kamensky, C. Wang, A. J. Herrema, F. Xu, M. S. Pigazzini, A. Verma, A. L. Marsden, Y. Bazilevs, and M.-C. Hsu. Optimizing fluid–structure interaction systems with immersogeometric analysis and surrogate modeling: Application to a hydraulic arresting gear. Computer Methods in Applied Mechanics and Engineering, 316:668–693, 2017.

    Article  MathSciNet  Google Scholar 

  138. C. Wang, M. C. H. Wu, F. Xu, M.-C. Hsu, and Y. Bazilevs. Modeling of a hydraulic arresting gear using fluid-structure interaction and isogeometric analysis. Computers & Fluids, 142:3–14, 2017.

    Article  MathSciNet  MATH  Google Scholar 

  139. D. Kamensky, J. A. Evans, M.-C. Hsu, and Y. Bazilevs. Projection-based stabilization of interface Lagrange multipliers in immersogeometric fluid–thin structure interaction analysis, with application to heart valve modeling. Computers & Mathematics with Applications, 74:2068–2088, 2017.

    Article  MathSciNet  MATH  Google Scholar 

  140. Y. Yu, D. Kamensky, M.-C. Hsu, X. Y. Lu, Y. Bazilevs, and T. J. R. Hughes. Error estimates for projection-based dynamic augmented Lagrangian boundary condition enforcement, with application to immersogeometric fluid–structure interaction. Mathematical Models and Methods in Applied Sciences, 2018. https://doi.org/10.1142/S0218202518500537.

  141. H. Casquero, Y. Zhang, C. Bona-Casas, L. Dalcin and H. Gomez. Non-body-fitted fluid–structure interaction: Divergence-conforming B splines, fully-implicit dynamics, and variational formulation. Journal of Computational Physics, 2018. https://doi.org/10.1016/j.jcp.2018.07.020.

    Article  MathSciNet  Google Scholar 

  142. H. Casquero, C. Bona-Casas, and H. Gomez. A NURBS-based immersed methodology for fluid–structure interaction. Computer Methods in Applied Mechanics and Engineering, 284:943–970, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  143. H. Casquero, L. Liu, C. Bona-Casas, Y. Zhang, and H. Gomez. A hybrid variational-collocation immersed method for fluid–structure interaction using unstructured t-splines. International Journal for Numerical Methods in Engineering, 105(11):855–880, 2015.

    Article  MathSciNet  Google Scholar 

  144. H. Casquero, C. Bona-Casas, and H. Gomez. NURBS-based numerical proxies for red blood cells and circulating tumor cells in microscale blood flow. Computer Methods in Applied Mechanics and Engineering, 316:646–667, 2017.

    Article  MathSciNet  Google Scholar 

  145. A.F. Sarmiento, A.M.A. Côrtes, D.A. Garcia, L. Dalcin, N. Collier, and V.M. Calo. PetIGA-MF: A multi-field high-performance toolbox for structure-preserving B-splines spaces. Journal of Computational Science, 18(Supplement C):117–131, 2017.

    Article  Google Scholar 

Download references

Acknowledgements

The work summarized in this chapter was supported by the National Heart, Lung, and Blood Institute of the National Institutes of Health (NIH/NHLBI) under award number R01HL129077. We thank the Texas Advanced Computing Center (TACC) at the University of Texas at Austin for providing HPC resources that have contributed to the research results reported in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Chen Hsu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hsu, MC., Kamensky, D. (2018). Immersogeometric Analysis of Bioprosthetic Heart Valves, Using the Dynamic Augmented Lagrangian Method. In: Tezduyar, T. (eds) Frontiers in Computational Fluid-Structure Interaction and Flow Simulation. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-96469-0_5

Download citation

Publish with us

Policies and ethics