Skip to main content

Endothelial Nuclear Lamina in Mechanotransduction Under Shear Stress

  • Chapter
  • First Online:
Molecular, Cellular, and Tissue Engineering of the Vascular System

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1097))

Abstract

Endothelial cells that line the lumen of blood vessels are at the interface between hemodynamic forces and vascular wall biology. Endothelial cells transduce mechanical and biological signals from blood flow into intracellular signaling cascades through a process called mechanotransduction. Mechanotransduction is an important part of normal cell functions, as well as endothelial dysfunction which leads to inflammation and pathological conditions. For example, atherosclerosis preferentially develops in regions of disturbed fluid flow and low shear stress. The nuclear lamina, which sits underneath the nuclear envelope, serves to maintain the nuclear structure while acting as a scaffold for heterochromatin and many transcriptional proteins. Defects in lamina and its associated proteins cause a variety of human diseases including accelerated aging diseases such as Hutchinson-Gilford Progeria syndrome. The role of nuclear lamina in endothelial mechanotransduction, specifically how nuclear mechanics impact gene regulation under shear stress, is not fully understood. In one study, lamin A/C was silenced in bovine aortic endothelial cells to determine its role in both glucocorticoid receptor (GR) nuclear translocation and glucocorticoid response element (GRE) transcriptional activation in response to its natural ligand dexamethasone as well as fluid shear stress. Results suggest that absence of lamin A/C does not hinder passage of GR into the nucleus but nuclear lamina is important to properly regulate GRE transcription. Ongoing research continues to investigate how nuclear lamins contribute to endothelial mechanotransduction and to better understand the role of Lamin A in vascular aging and in the progression of cardiovascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adcock IM (2001) Glucocorticoid-regulated transcription factors. Pulm Pharmacol Ther 14:211–219

    Article  CAS  Google Scholar 

  • Adcock IM, Caramori G (2001) Cross-talk between pro-inflammatory transcription factors and glucocorticoids. Immunol Cell Biol 79:376–384

    Article  CAS  Google Scholar 

  • Al-Shali KZ, Hegele RA (2004) Laminopathies and atherosclerosis. Arterioscler Thromb Vasc Biol 24:1591–1595

    Article  CAS  Google Scholar 

  • Alsheimer M, Von Glasenapp E, Schnolzer M, Heid H, Benavente R (2000) Meiotic lamin C2: the unique amino-terminal hexapeptide GNAEGR is essential for nuclear envelope association. Proc Natl Acad Sci U S A 97:13120–13125

    Article  CAS  Google Scholar 

  • Ando J, Tsuboi H, Korenaga R, Takada Y, Toyama-Sorimachi N, Miyasaka M et al (1994) Shear stress inhibits adhesion of cultured mouse endothelial cells to lymphocytes by downregulating VCAM-1 expression. Am J Physiol 267:C679–C687

    Article  CAS  Google Scholar 

  • Barnes PJ (1998) Anti-inflammatory actions of glucocorticoids: molecular mechanisms. Clin Sci (Lond) 94:557–572

    Article  CAS  Google Scholar 

  • Beck IM, Vanden Berghe W, Vermeulen L, Yamamoto KR, Haegeman G, De Bosscher K (2009) Crosstalk in inflammation: the interplay of glucocorticoid receptor-based mechanisms and kinases and phosphatases. Endocr Rev 30:830–882

    Article  CAS  Google Scholar 

  • Biamonti G, Giacca M, Perini G, Contreas G, Zentilin L, Weighardt F, Guerra M, Della Valle G, Saccone S, Riva S et al (1992) The gene for a novel human Lamin maps at a highly transcribed locus of chromosome 19 which replicates at the onset of S-phase. Mol Cell Biol 12:3499–3506

    Article  CAS  Google Scholar 

  • Bione S, Maestrini E, Rivella S, Mancini M, Regis S, Romeo G, Toniolo D (1994) Identification of a novel X-linked gene responsible for Emery-Dreifuss muscular dystrophy. Nat Genet 8:323–327

    Article  CAS  Google Scholar 

  • Bonne G, Di Barletta MR, Varnous S, Becane HM, Hammouda EH, Merlini L, Muntoni F, Greenberg CR, Gary F, Urtizberea JA, Duboc D, Fardeau M, Toniolo D, Schwartz K (1999) Mutations in the gene encoding lamin A/C cause autosomal dominant Emery-Dreifuss muscular dystrophy. Nat Genet 21:285–288

    Article  CAS  Google Scholar 

  • Brassard JA, Fekete N, Garnier A, Hoesli CA (2016) Hutchinson-Gilford progeria syndrome as a model for vascular aging. Biogerontology 17:129–145

    Article  CAS  Google Scholar 

  • Broers JLV, Ramaekers FCS, Bonne G, Ben Yaou R, Hutchison CJ (2006) Nuclear lamins: Laminopathies and their role in premature ageing. Physiol Rev 86:967–1008

    Article  CAS  Google Scholar 

  • Brostjan C, Anrather J, Csizmadia V, Natarajan G, Winkler H (1997) Glucocorticoids inhibit E-selectin expression by targeting NF-kappaB and not ATF/c-Jun. J Immunol 158:3836–3844

    CAS  PubMed  Google Scholar 

  • Burke B, Stewart CL (2013) The nuclear lamins: flexibility in function. Nat Rev Mol Cell Biol 14:13–24

    Article  CAS  Google Scholar 

  • Butin-Israeli V, Adam SA, Goldman AE, Goldman RD (2012) Nuclear lamin functions and disease. Trends Genet 28:464–471

    Article  CAS  Google Scholar 

  • Cao H, Hegele RA (2000) Nuclear lamin A/C R482Q mutation in Canadian kindreds with Dunnigan-type familial partial lipodystrophy. Hum Mol Genet 9:109–112

    Article  CAS  Google Scholar 

  • Cao K, Graziotto JJ, Blair CD, Mazzulli JR, Erdos MR, Krainc D, Collins FS (2011) Rapamycin reverses cellular phenotypes and enhances mutant protein clearance in Hutchinson-Gilford progeria syndrome cells. Sci Transl Med 3:89ra58

    CAS  PubMed  Google Scholar 

  • Chen XL, Varner SE, Rao AS, Grey JY, Thomas S, Cook CK, Wasserman MA, Medford RM, Jaiswal AK, Kunsch C (2003) Laminar flow induction of antioxidant response element-mediated genes in endothelial cells. A novel anti-inflammatory mechanism. J Biol Chem 278:703–711

    Article  CAS  Google Scholar 

  • Chien S (2007) Mechanotransduction and endothelial cell homeostasis: the wisdom of the cell. Am J Physiol Heart Circ Physiol 292:H1209–H1224

    Article  CAS  Google Scholar 

  • Crisp M, Liu Q, Roux K, Rattner JB, Shanahan C, Burke B, Stahl PD, Hodzic D (2006) Coupling of the nucleus and cytoplasm: role of the LINC complex. J Cell Biol 172:41–53

    Article  CAS  Google Scholar 

  • Dahl KN, Ribeiro AJ, Lammerding J (2008) Nuclear shape, mechanics, and mechanotransduction. Circ Res 102:1307–1318

    Article  CAS  Google Scholar 

  • Davies PF, Polacek DC, Shi C, Helmke BP (2002) The convergence of haemodynamics, genomics, and endothelial structure in studies of the focal origin of atherosclerosis. Biorheology 39:299–306

    CAS  PubMed  PubMed Central  Google Scholar 

  • De Sandre-Giovannoli A, Chaouch M, Kozlov S, Vallat JM, Tazir M, Kassouri N, Szepetowski P, Hammadouche T, Vandenberghe A, Stewart CL, Grid D, Levy N (2002) Homozygous defects in LMNA, encoding lamin A/C nuclear-envelope proteins, cause autosomal recessive axonal neuropathy in human (Charcot-Marie-Tooth disorder type 2) and mouse. Am J Hum Genet 70:726–736

    Article  CAS  Google Scholar 

  • De Vos WH, Houben F, Kamps M, Malhas A, Verheyen F, Cox J, Manders EM, Verstraeten VL, Van Steensel MA, Marcelis CL, Van den Wijngaard A, Vaux DJ, Ramaekers FC, Broers JL (2011) Repetitive disruptions of the nuclear envelope invoke temporary loss of cellular compartmentalization in laminopathies. Hum Mol Genet 20:4175–4186

    Article  CAS  Google Scholar 

  • Demmerle J, Koch AJ, Holaska JM (2012) The nuclear envelope protein Emerin binds directly to histone Deacetylase 3 (HDAC3) and activates HDAC3 activity. J Biol Chem 287:22080–22088

    Article  CAS  Google Scholar 

  • Dewey CF Jr, Bussolari SR, Gimbrone MA Jr, Davies PF (1981) The dynamic response of vascular endothelial cells to fluid shear stress. J Biomech Eng 103:177–185

    Article  Google Scholar 

  • Diamond SL, Eskin SG, McIntire LV (1989) Fluid flow stimulates tissue plasminogen activator secretion by cultured human endothelial cells. Science 243:1483–1485

    Article  CAS  Google Scholar 

  • Diamond S, Sharefkin J, Dieffenbach C, Frasier-Scott K, Mcintire L, Eskin S (1990) Tissue plasminogen activator messenger RNA levels increase in cultured human endothelial cells exposed to laminar shear stress. J Cell Physiol 143:364–371

    Article  CAS  Google Scholar 

  • Dittmer TA, Misteli T (2011) The Lamin protein family. Genome Biol 12:222

    Article  CAS  Google Scholar 

  • Dreesen O, Stewart CL (2011) Accelerated aging syndromes, are they relevant to normal human aging? Aging (Albany NY) 3:889–895

    Article  CAS  Google Scholar 

  • Eickelberg O, Roth M, Lorx R, Bruce V, Rudiger J, Johnson M, Block LH (1999) Ligand-independent activation of the glucocorticoid receptor by beta2-adrenergic receptor agonists in primary human lung fibroblasts and vascular smooth muscle cells. J Biol Chem 274:1005–1010

    Article  CAS  Google Scholar 

  • Eriksson M, Brown WT, Gordon LB, Glynn MW, Singer J, Scott L, Erdos MR, Robbins CM, Moses TY, Berglund P, Dutra A, Pak E, Durkin S, Csoka AB, Boehnke M, Glover TW, Collins FS (2003) Recurrent de novo point mutations in Lamin A cause Hutchinson-Gilford progeria syndrome. Nature 423:293–298

    Article  CAS  Google Scholar 

  • Fatkin D, Macrae C, Sasaki T, Wolff MR, Porcu M, Frenneaux M, Atherton J, Vidaillet HJ Jr, Spudich S, De Girolami U, Seidman JG, Seidman C, Muntoni F, Muehle G, Johnson W, Mcdonough B (1999) Missense mutations in the rod domain of the lamin A/C gene as causes of dilated cardiomyopathy and conduction-system disease. N Engl J Med 341:1715–1724

    Article  CAS  Google Scholar 

  • Fleming I, Bauersachs J, Busse R (1997) Calcium-dependent and calcium-independent activation of the endothelial NO synthase. J Vasc Res 34:165–174

    Article  CAS  Google Scholar 

  • Frangos JA, Mcintire LV, Eskin SG (1988) Shear stress induced stimulation of mammalian cell metabolism. Biotechnol Bioeng 32:1053–1060

    Article  CAS  Google Scholar 

  • Galliher-Beckley AJ, Williams JG, Cidlowski JA (2011) Ligand-independent phosphorylation of the glucocorticoid receptor integrates cellular stress pathways with nuclear receptor signaling. Mol Cell Biol 31:4663–4675

    Article  CAS  Google Scholar 

  • Gimbrone MA Jr, Resnick N, Nagel T, Khachigian LM, Collins T, Topper JN (1997) Hemodynamics, endothelial gene expression, and atherogenesis. Ann N Y Acad Sci 811:1–10; discussion 1

    Article  CAS  Google Scholar 

  • Gruenbaum Y, Margalit A, Goldman RD, Shumaker DK, Wilson KL (2005) The nuclear lamina comes of age. Nat Rev Mol Cell Biol 6:21–31

    Article  CAS  Google Scholar 

  • Helmlinger G, Berk BC, Nerem RM (1995) Calcium responses of endothelial cell monolayers subjected to pulsatile and steady laminar flow differ. Am J Physiol 269:C367–C375

    Article  CAS  Google Scholar 

  • Hennekam RC (2006) Hutchinson-Gilford progeria syndrome: review of the phenotype. Am J Med Genet A 140:2603–2624

    Article  Google Scholar 

  • Hishikawa K, Nakaki T, Marumo T, Suzuki H, Kato R, Saruta T (1995) Pressure enhances endothelin-1 release from cultured human endothelial cells. Hypertension 25:449–452

    Article  CAS  Google Scholar 

  • Ho CY, Lammerding J (2012) Lamins at a glance. J Cell Sci 125:2087–2093

    Article  CAS  Google Scholar 

  • Hutchison CJ (2002) Lamins: building blocks or regulators of gene expression? Nat Rev Mol Cell Biol 3:848–858

    Article  CAS  Google Scholar 

  • Hutchison CJ, Worman HJ (2004) A-type lamins: guardians of the soma? Nat Cell Biol 6:1062–1067

    Article  CAS  Google Scholar 

  • Itoh M, Adachi M, Yasui H, Takekawa M, Tanaka H, Imai K (2002) Nuclear export of glucocorticoid receptor is enhanced by c-Jun N-terminal kinase-mediated phosphorylation. Mol Endocrinol 16:2382–2392

    Article  CAS  Google Scholar 

  • Ji JY, Jing H, Diamond SL (2003) Shear stress causes nuclear localization of endothelial glucocorticoid receptor and expression from the GRE promoter. Circ Res 92:279–285

    Article  CAS  Google Scholar 

  • Ji JY, Lee RT, Vergnes L, Fong LG, Stewart CL, Reue K, Young SG, Zhang Q, Shanahan CM, Lammerding J (2007) Cell nuclei spin in the absence of Lamin B1. J Biol Chem 282:20015–20026

    Article  CAS  Google Scholar 

  • Kaiser D, Freyberg MA, Friedl P (1997) Lack of hemodynamic forces triggers apoptosis in vascular endothelial cells. Biochem Biophys Res Commun 231:586–590

    Article  CAS  Google Scholar 

  • Kolb T, Maass K, Hergt M, AEBI U, Herrmann H (2011) Lamin A and lamin C form homodimers and coexist in higher complex forms both in the nucleoplasmic fraction and in the lamina of cultured human cells. Nucleus 2:425–433

    Article  Google Scholar 

  • Korenaga R, Ando J, Kosaki K, Isshiki M, Takada Y, Kamiya A (1997) Negative transcriptional regulation of the VCAM-1 gene by fluid shear stress in murine endothelial cells. Am J Physiol 273:C1506–C1515

    Article  CAS  Google Scholar 

  • Krohne G, Benavente R (1986) The nuclear lamins. A multigene family of proteins in evolution and differentiation. Exp Cell Res 162:1–10

    Article  CAS  Google Scholar 

  • Kuchan M, Frangos J (1994) Role of calcium and calmodulin in flow-induced nitric oxide production in endothelial cells. Am J Phys 266:C628–C636

    Article  CAS  Google Scholar 

  • Lammerding J, Schulze PC, Takahashi T, Kozlov S, Sullivan T, Kamm RD, Stewart CL, Lee RT (2004) Lamin A/C deficiency causes defective nuclear mechanics and mechanotransduction. J Clin Invest 113:370–378

    Article  CAS  Google Scholar 

  • Lammerding J, Fong LG, JI JY, reue K, Stewart CL, Young SG, Lee RT (2006) Lamins a and C but not Lamin B1 regulate nuclear mechanics. J Biol Chem 281:25768–25780

    Article  CAS  Google Scholar 

  • Lloyd DJ, Trembath RC, Shackleton S (2002) A novel interaction between Lamin A and SREBP1: implications for partial lipodystrophy and other laminopathies. Hum Mol Genet 11:769–777

    Article  CAS  Google Scholar 

  • Malek A, Izumo S (1992) Physiological fluid shear stress causes downregulation of endothelin-1 mRNA in bovine aortic endothelium. Am J Physiol 263:C389–C396

    Article  CAS  Google Scholar 

  • Malek AM, Izumo S (1994) Molecular aspects of signal transduction of shear stress in the endothelial cell. J Hypertens 12:989–999

    Article  CAS  Google Scholar 

  • Malek AM, Alper SL, Izumo S (1999) Hemodynamic shear stress and its role in atherosclerosis. JAMA 282:2035–2042

    Article  CAS  Google Scholar 

  • Malhas AN, Lee CF, Vaux DJ (2009) Lamin B1 controls oxidative stress responses via Oct-1. J Cell Biol 184:45–55

    Article  CAS  Google Scholar 

  • Marroquin J, Mitter S, Poggio T (1987) Probabalistic solution of ill-posed problems in computational vision. J Am Stat Assoc 82:76–89

    Article  Google Scholar 

  • Masuda H, Kawamura K, Tohda K, Shozawa T, Sageshima M, Kamiya A (1989) Increase in endothelial cell density before artery enlargement in flow-loaded canine carotid artery. Arteriosclerosis 9:812–823

    Article  CAS  Google Scholar 

  • Merideth MA, Gordon LB, Clauss S, Sachdev V, Smith AC, Perry MB, Brewer CC, Zalewski C, Kim HJ, Solomon B, Brooks BP, Gerber LH, Turner ML, Domingo DL, Hart TC, Graf J, Reynolds JC, Gropman A, Yanovski JA, Gerhard-Herman M, Collins FS, Nabel EG, Cannon RO 3rd, Gahl WA, Introne WJ (2008) Phenotype and course of Hutchinson-Gilford progeria syndrome. N Engl J Med 358:592–604

    Article  CAS  Google Scholar 

  • Muchir A, Pavlidis P, Decostre V, Herron AJ, Arimura T, Bonne G, Worman HJ (2007) Activation of MAPK pathways links LMNA mutations to cardiomyopathy in Emery-Dreifuss muscular dystrophy. J Clin Invest 117:1282–1293

    Article  CAS  Google Scholar 

  • Nayebosadri A, Ji JY (2013) Endothelial nuclear lamina is not required for glucocorticoid receptor nuclear import but does affect receptor-mediated transcription activation. Am J Physiol Cell Physiol 305:C309–C322

    Article  CAS  Google Scholar 

  • Nayebosadri A, Christopher L, Ji JY (2012) Bayesian image analysis of dexamethasone and shear stress-induced glucocorticoid receptor intracellular movement. Ann Biomed Eng 40:1508–1519

    Article  Google Scholar 

  • Ohno M, Cooke JP, Dzau VJ, Gibbons GH (1995) Fluid shear stress induces endothelial transforming growth factor beta-1 transcription and production. Modulation by potassium channel blockade. J Clin Invest 95:1363–1369

    Article  CAS  Google Scholar 

  • Olive M, Harten I, Mitchell R, Beers JK, Djabali K, Cao K, Erdos MR, Blair C, Funke B, Smoot L, Gerhard-Herman M, Machan JT, Kutys R, Virmani R, Collins FS, Wight TN, Nabel EG, Gordon LB (2010) Cardiovascular pathology in Hutchinson-Gilford progeria: correlation with the vascular pathology of aging. Arterioscler Thromb Vasc Biol 30:2301–2309

    Article  CAS  Google Scholar 

  • Palmer RM, Ashton DS, Moncada S (1988) Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 333:664–666

    Article  CAS  Google Scholar 

  • Passerini AG, Polacek DC, Shi C, Francesco NM, Manduchi E, Grant GR, Pritchard WF, Powell S, CHANG GY, Stoeckert CJ Jr, Davies PF (2004) Coexisting proinflammatory and antioxidative endothelial transcription profiles in a disturbed flow region of the adult porcine aorta. Proc Natl Acad Sci U S A 101:2482–2487

    Article  CAS  Google Scholar 

  • Pavalko FM, Gerard RL, Ponik SM, Gallagher PJ, Jin Y, Norvell SM (2003) Fluid shear stress inhibits TNF-alpha-induced apoptosis in osteoblasts: a role for fluid shear stress-induced activation of PI3-kinase and inhibition of caspase-3. J Cell Physiol 194:194–205

    Article  CAS  Google Scholar 

  • Ragnauth CD, Warren DT, Liu Y, McNair R, Tajsic T, Figg N, Shroff R, Skepper J, Shanahan CM (2010) Prelamin A acts to accelerate smooth muscle cell senescence and is a novel biomarker of human vascular aging. Circulation 121:2200–2210

    Article  CAS  Google Scholar 

  • Ranjan V, Xiao Z, Diamond SL (1995) Constitutive NOS expression in cultured endothelial cells is elevated by fluid shear stress. Am J Physiol 269:H550–H555

    CAS  PubMed  Google Scholar 

  • Resnick N, Collins T, Atkinson W, Bonthron DT, Dewey CF Jr, Gimbrone MA Jr (1993) Platelet-derived growth factor B chain promoter contains a cis-acting fluid shear-stress-responsive element. Proc Natl Acad Sci U S A 90:4591–4595

    Article  CAS  Google Scholar 

  • ROSS R (1999) Atherosclerosis--an inflammatory disease. N Engl J Med 340:115–126

    Article  CAS  Google Scholar 

  • Scaffidi P, Misteli T (2006) Lamin A-dependent nuclear defects in human aging. Science 312:1059–1063

    Article  CAS  Google Scholar 

  • Scaffidi P, Gordon L, Misteli T (2005) The cell nucleus and aging: tantalizing clues and hopeful promises. PLoS Biol 3:e395

    Article  Google Scholar 

  • Shadwick RE (1999) Mechanical design in arteries. J Exp Biol 202:3305–3313

    CAS  PubMed  Google Scholar 

  • Shevelyov YY, Nurminsky DI (2012) The nuclear lamina as a gene-silencing hub. Curr Issues Mol Biol 14:27–38

    CAS  PubMed  Google Scholar 

  • Shyy JY, Li YS, Lin MC, Chen W, Yuan S, Usami S, Chien S (1995) Multiple cis-elements mediate shear stress-induced gene expression. J Biomech 28:1451–1457

    Article  CAS  Google Scholar 

  • Sieprath T, Darwiche R, De Vos WH (2012) Lamins as mediators of oxidative stress. Biochem Biophys Res Commun 421:635–639

    Article  CAS  Google Scholar 

  • Stehbens WE, Wakefield SJ, Gilbert-Barness E, Olson RE, Ackerman J (1999) Histological and ultrastructural features of atherosclerosis in progeria. Cardiovasc Pathol 8:29–39

    Article  CAS  Google Scholar 

  • Surapisitchat J, Hoefen RJ, Pi X, Yoshizumi M, Yan C, Berk BC (2001) Fluid shear stress inhibits TNF-alpha activation of JNK but not ERK1/2 or p38 in human umbilical vein endothelial cells: inhibitory crosstalk among MAPK family members. Proc Natl Acad Sci U S A 98:6476–6481

    Article  CAS  Google Scholar 

  • Teichert AM, Scott JA, Robb GB, Zhou YQ, Zhu SN, Lem M, Keightley A, Steer BM, Schuh AC, Adamson SL, Cybulsky MI, Marsden PA (2008) Endothelial nitric oxide synthase gene expression during murine embryogenesis: commencement of expression in the embryo occurs with the establishment of a unidirectional circulatory system. Circ Res 103:24–33

    Article  CAS  Google Scholar 

  • Topper JN, Cai J, Falb D, Gimbrone MA Jr (1996) Identification of vascular endothelial genes differentially responsive to fluid mechanical stimuli: cyclooxygenase-2, manganese superoxide dismutase, and endothelial cell nitric oxide synthase are selectively up-regulated by steady laminar shear stress. Proc Natl Acad Sci U S A 93:10417–10422

    Article  CAS  Google Scholar 

  • Tseng H, Peterson T, Berk B (1995) Fluid shear stress stimulates mitogen-activated protein kinase in endothelial cells. Circ Res 77:869–878

    Article  CAS  Google Scholar 

  • Varga R, Eriksson M, Erdos MR, Olive M, Harten I, Kolodgie F, Capell BC, Cheng J, Faddah D, Perkins S, Avallone H, San H, Qu X, Ganesh S, Gordon LB, Virmani R, Wight TN, Nabel EG, Collins FS (2006) Progressive vascular smooth muscle cell defects in a mouse model of Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci U S A 103:3250–3255

    Article  CAS  Google Scholar 

  • Volger OL, Fledderus JO, Kisters N, Fontijn RD, Moerland PD, Kuiper J, Van Berkel TJ, Bijnens AP, Daemen MJ, Pannekoek H, Horrevoets AJG (2007) Distinctive expression of chemokines and transforming growth factor-beta signaling in human arterial endothelium during atherosclerosis. Am J Pathol 171:326–337

    Article  CAS  Google Scholar 

  • Wilson KL, Berk JM (2010) The nuclear envelope at a glance. J Cell Sci 123:1973–1978

    Article  CAS  Google Scholar 

  • Wydner KL, Mcneil JA, Lin F, Worman HJ, Lawrence JB (1996) Chromosomal assignment of human nuclear envelope protein genes LMNA, LMNB1, and LBR by fluorescence in situ hybridization. Genomics 32:474–478

    Article  CAS  Google Scholar 

  • Yang SH, Meta M, Qiao X, Frost D, Bauch J, Coffinier C, Majumdar S, Bergo MO, Young SG, Fong LG (2006) A farnesyltransferase inhibitor improves disease phenotypes in mice with a Hutchinson-Gilford progeria syndrome mutation. J Clin Invest 116:2115–2121

    Article  CAS  Google Scholar 

  • Zanchi NE, Filho MA, Felitti V, Nicastro H, Lorenzeti FM, Lancha AH Jr (2010) Glucocorticoids: extensive physiological actions modulated through multiple mechanisms of gene regulation. J Cell Physiol 224:311–315

    Article  CAS  Google Scholar 

  • Zebda N, Dubrovskyi O, Birukov KG (2012) Focal adhesion kinase regulation of mechanotransduction and its impact on endothelial cell functions. Microvasc Res 83:71–81

    Article  CAS  Google Scholar 

  • Zwerger M, Jaalouk DE, Lombardi ML, Isermann P, Mauermann M, Dialynas G, Herrmann H, Wallrath LL, Lammerding J (2013) Myopathic Lamin mutations impair nuclear stability in cells and tissue and disrupt nucleo-cytoskeletal coupling. Hum Mol Genet 22(12):2335–2349

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie Y. Ji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ji, J.Y. (2018). Endothelial Nuclear Lamina in Mechanotransduction Under Shear Stress. In: Fu, B., Wright, N. (eds) Molecular, Cellular, and Tissue Engineering of the Vascular System. Advances in Experimental Medicine and Biology, vol 1097. Springer, Cham. https://doi.org/10.1007/978-3-319-96445-4_5

Download citation

Publish with us

Policies and ethics