Skip to main content

Heavy Metals Phytoremediation: First Mathematical Modelling Results

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 126))

Abstract

This work deals with the numerical modelling of the different processes related to the phytoremediation methods for remedying heavy metal-contaminated environments. Phytoremediation is a cost-effective plant-based approach of remediation that takes advantage of the ability of plants to concentrate elements and compounds from the environment and to metabolize them in their tissues (toxic heavy metals and organic pollutants are the major targets of phytoremediation). Within the framework of water pollution, biosorption has received considerable attention in recent years because of its advantages: biosorption uses cheap but efficient materials as biosorbents, such as naturally abundant algae. In order to analyse this environmental problem, we propose a two-dimensional mathematical model combining shallow water hydrodynamics with the system of coupled equations modelling the concentrations of heavy metals, algae and nutrients in large waterbodies. Within this novel framework, we present a numerical algorithm for solving the system, and several preliminary computational examples for a simple realistic case.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. L.J. Alvarez-Vázquez, A. Martínez, R. Muñoz-Sola, C. Rodríguez, M.E. Vázquez-Méndez, The water conveyance problem: optimal purification of polluted waters. Math. Models Methods Appl. Sci. 15, 1393–1416 (2005)

    Article  MathSciNet  Google Scholar 

  2. L.J. Alvarez-Vázquez, F.J. Fernández, R. Muñoz-Sola, Mathematical analysis of a three-dimensional eutrophication model. J. Math. Anal. Appl. 349, 135–155 (2009)

    Article  MathSciNet  Google Scholar 

  3. L.J. Alvarez-Vázquez, F.J. Fernández, A. Martínez, Optimal management of a bioreactor for eutrophicated water treatment: a numerical approach. J. Sci. Comput. 43, 67–91 (2010)

    Article  MathSciNet  Google Scholar 

  4. E. Casas, C. Ryll, F. Troltzsch, Sparse optimal control of the Schlogl and FitzHugh-Nagumo systems. Comput. Methods Appl. Math. 13, 415–442 (2013)

    Article  MathSciNet  Google Scholar 

  5. F. Hecht, New development in Freefem++. J. Numer. Math. 20, 251–265 (2012)

    Article  MathSciNet  Google Scholar 

  6. D. Mani, C. Kumar, Biotechnological advances in bioremediation of heavy metals contaminated ecosystems: an overview with special reference to phytoremediation. Int. J. Environ. Sci. Technol. 11, 843–872 (2014)

    Article  Google Scholar 

  7. A. Martínez, L.J. Alvarez-Vázquez, C. Rodríguez, M.E. Vázquez-Méndez, M.A. Vilar, Optimal shape design of wastewater canals in a thermal power station, in Progress in Industrial Mathematics at ECMI 2012, ed. by M. Fontes, M. Gunther, N. Marheineke (Springer, New York, 2014), pp. 59–64

    Chapter  Google Scholar 

  8. MIKE 21, User guide and reference manual, Danish Hydraulic Institute (DHI), Horsholm, 2001

    Google Scholar 

  9. H. Perales-Vela, J. Peña-Castro, R. Cañizares-Villanueva, Heavy metal detoxification in eukaryotic microalgae. Chemosphere 64, 1–10 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by funding from project MTM2015-65570-P of MINECO (Spain) and FEDER. The authors also thank the help and support provided by DHI with the MIKE21 modelling system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurea Martínez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Martínez, A., Alvarez-Vázquez, L.J., Rodríguez, C., Vázquez-Méndez, M.E., Vilar, M.A. (2019). Heavy Metals Phytoremediation: First Mathematical Modelling Results. In: Radu, F., Kumar, K., Berre, I., Nordbotten, J., Pop, I. (eds) Numerical Mathematics and Advanced Applications ENUMATH 2017. ENUMATH 2017. Lecture Notes in Computational Science and Engineering, vol 126. Springer, Cham. https://doi.org/10.1007/978-3-319-96415-7_77

Download citation

Publish with us

Policies and ethics