Skip to main content

A Spectral Element Reduced Basis Method in Parametric CFD

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 126))

Abstract

We consider the Navier-Stokes equations in a channel with varying Reynolds numbers. The model is discretized with high-order spectral element ansatz functions, resulting in 14,259 degrees of freedom. The steady-state snapshot solutions define a reduced order space, which allows to accurately evaluate the steady-state solutions for varying Reynolds number with a reduced order model within a fixed-point iteration. In particular, we compare different aspects of implementing the reduced order model with respect to the use of a spectral element discretization. It is shown, how a multilevel static condensation (Karniadakis and Sherwin, Spectral/hp element methods for computational fluid dynamics, 2nd edn. Oxford University Press, Oxford, 2005) in the pressure and velocity boundary degrees of freedom can be combined with a reduced order modelling approach to enhance computational times in parametric many-query scenarios.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    See www.nektar.info.

References

  1. G. Karniadakis, S. Sherwin, Spectral/hp Element Methods for Computational Fluid Dynamics, 2nd edn. (Oxford University Press, Oxford, 2005)

    Book  Google Scholar 

  2. C. Canuto, M.Y. Hussaini, A. Quarteroni, Th.A. Zhang, Spectral Methods Fundamentals in Single Domains (Springer – Scientific Computation, New York, 2006)

    MATH  Google Scholar 

  3. C. Canuto, M.Y. Hussaini, A. Quarteroni, Th.A. Zhang, Spectral Methods Evolution to Complex Geometries and Applications to Fluid Dynamics (Springer – Scientific Computation, New York, 2007)

    MATH  Google Scholar 

  4. A.T. Patera, A spectral element method for fluid dynamics; laminar flow in a channel expansion. J. Comput. Phys. 54(3), 468–488 (1984)

    Article  Google Scholar 

  5. H. Herrero, Y. Maday, F. Pla, RB (Reduced Basis) for RB (Rayleigh–Bénard). Comput. Methods Appl. Mech. Eng. 261–262, 132–141 (2013)

    Article  Google Scholar 

  6. L. Fick, Y. Maday, A. Patera, T. Taddei, A reduced basis technique for long-time unsteady turbulent flows. J. Comput. Phys. (submitted). arxiv: https://arxiv.org/pdf/1710.03569.pdf

  7. J.S. Hesthaven, G. Rozza, B. Stamm, Certified Reduced Basis Methods for Parametrized Partial Differential Equations. Springer Briefs in Mathematics (Springer, Berlin, 2016)

    Google Scholar 

  8. G. Pitton, A. Quaini, G. Rozza, Computational reduction strategies for the detection of steady bifurcations in incompressible fluid-dynamics: applications to Coanda effect in cardiology. J. Comput. Phys. 344, 534–557 (2017)

    Article  MathSciNet  Google Scholar 

  9. M. Burger, Numerical Methods for Incompressible Flow. Lecture Notes (UCLA, Los Angeles, 2010)

    Google Scholar 

  10. C.D. Cantwell, D. Moxey, A. Comerford, A. Bolis, G. Rocco, G. Mengaldo, D. de Grazia, S. Yakovlev, J.-E. Lombard, D. Ekelschot, B. Jordi, H. Xu, Y. Mohamied, C. Eskilsson, B. Nelson, P. Vos, C. Biotto, R.M. Kirby, S.J. Sherwin, Nektar++: an open-source spectral/hp element framework. Comput. Phys. Commun. 192, 205–219 (2015)

    Article  Google Scholar 

  11. T. Lassila, A. Manzoni, A. Quarteroni, G. Rozza, Model Order Reduction in Fluid Dynamics: Challenges and Perspectives, vol. 9, ed. by A. Quarteroni, G. Rozza. Reduced Order Methods for Modelling and Computational Reduction (Springer International Publishing, MS&A, Cham, 2014), pp. 235–273

    Google Scholar 

  12. G. Pitton, G. Rozza, On the application of reduced basis methods to bifurcation problems in incompressible fluid dynamics. J. Sci. Comput. 73, 157 (2017)

    Article  MathSciNet  Google Scholar 

  13. D. Boffi, F. Brezzi, M. Fortin, Mixed Finite Element Methods and Applications. Springer Series in Computational Mathematics (Springer, Berlin, 2013)

    Google Scholar 

  14. A. Quarteroni, A. Valli, Numerical Approximation of Partial Differential Equations (Springer, Berlin, 1994)

    MATH  Google Scholar 

  15. R. Wille, H. Fernholz, Report on the first European Mechanics Colloquium, on the Coanda effect. J. Fluid Mech. 23(4), 801–819 (1965)

    Article  Google Scholar 

  16. A. Quaini, R. Glowinski, S. Čanić, A computational study on the generation of the Coanda effect in a mock heart chamber. RIMS Kôkyûroku series, No. 2009-4 (2016)

    Google Scholar 

  17. Y. Maday, E.M. Ronquist, A reduced-basis element method. C. R. Math. 335(2), 195–200 (2002)

    Article  MathSciNet  Google Scholar 

  18. A.E. Lovgren, Y. Maday, E.M. Ronquist, A reduced basis element method for the steady stokes problem. ESAIM: Math. Model. Numer. Anal. 40(3), 529–552 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by European Union Funding for Research and Innovation through the European Research Council (project H2020 ERC CoG 2015 AROMA-CFD project 681447, P.I. Prof. G. Rozza).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin W. Hess .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hess, M.W., Rozza, G. (2019). A Spectral Element Reduced Basis Method in Parametric CFD. In: Radu, F., Kumar, K., Berre, I., Nordbotten, J., Pop, I. (eds) Numerical Mathematics and Advanced Applications ENUMATH 2017. ENUMATH 2017. Lecture Notes in Computational Science and Engineering, vol 126. Springer, Cham. https://doi.org/10.1007/978-3-319-96415-7_64

Download citation

Publish with us

Policies and ethics