Skip to main content

Iterative Coupling of Mixed and Discontinuous Galerkin Methods for Poroelasticity

  • Conference paper
  • First Online:
Numerical Mathematics and Advanced Applications ENUMATH 2017 (ENUMATH 2017)

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 126))

Included in the following conference series:

Abstract

We analyze an iterative coupling of mixed and discontinuous Galerkin methods for numerical modelling of coupled flow and mechanical deformation in porous media. The iteration is based on an optimized fixed-stress split along with a discontinuous variational time discretization. For the spatial discretization of the subproblem of flow mixed finite element techniques are applied. The spatial discretization of the subproblem of mechanical deformation uses discontinuous Galerkin methods. They have shown their ability to eliminate locking that sometimes arises in numerical algorithms for poroelasticity and causes nonphysical pressure oscillations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Bause, F. Radu, U. Köcher, Space-time finite element approximation of the Biot poroelasticity system with iterative coupling. Comput. Methods Appl. Mech. Eng. 320, 745–768 (2017)

    Article  MathSciNet  Google Scholar 

  2. J.W. Both, M. Borregales, J.M. Nordbotton, K. Kundan, F.A. Radu, Robust fixed stress splitting for Biot’s equations in heterogeneous media. Appl. Math. Lett. 68, 101–108 (2017)

    Article  MathSciNet  Google Scholar 

  3. A. Mikelić, M. Wheeler, Convergence of iterative coupling for coupled flow and geomechanics. Comput. Geosci. 17, 479–496 (2013)

    Article  MathSciNet  Google Scholar 

  4. P. Philips, M. Wheeler, A coupling of mixed and discontinuous Galerkin finite element methods for poroelasticity. Comput. Geosci. 12, 417–435 (2008)

    Article  MathSciNet  Google Scholar 

  5. P. Philips, M. Wheeler, Overcoming the problem of locking in linear elasticity and poroelasticity: an heuristic approach. Comput. Geosci. 13, 5–12 (2009)

    Article  Google Scholar 

  6. S.-Y. Yi, A study of two modes of locking in poroelasticity. SIAM J. Numer. Anal. 55, 1915–1936 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Bause .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bause, M. (2019). Iterative Coupling of Mixed and Discontinuous Galerkin Methods for Poroelasticity. In: Radu, F., Kumar, K., Berre, I., Nordbotten, J., Pop, I. (eds) Numerical Mathematics and Advanced Applications ENUMATH 2017. ENUMATH 2017. Lecture Notes in Computational Science and Engineering, vol 126. Springer, Cham. https://doi.org/10.1007/978-3-319-96415-7_50

Download citation

Publish with us

Policies and ethics