Skip to main content

On Non-commutative Stochastic Exponentials

  • Conference paper
  • First Online:
Numerical Mathematics and Advanced Applications ENUMATH 2017 (ENUMATH 2017)

Abstract

Using non-commutative shuffle algebra, we outline how the Magnus expansion allows to define explicit stochastic exponentials for matrix-valued continuous semimartingales and Stratonovich integrals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Agrachev, R. Gamkrelidze, Chronological algebras and nonstationary vector fields. J. Sov. Math. 17, 1650–1675 (1981)

    Article  Google Scholar 

  2. M. Arnaudon, Semi-martingales dans les espaces homogènes. Ann. Inst. Henri Poincaré. 29(2), 269–288 (1993)

    MathSciNet  MATH  Google Scholar 

  3. P. Biane, Free Brownian motion, free stochastic calculus and random matrices. Fields Inst. Commun. 12, 1–19 (1997)

    MathSciNet  MATH  Google Scholar 

  4. Ph. Biane, R. Speicher, Stochastic calculus with respect to free Brownian motion and analysis on Wigner space. Probab. Theory Relat. Fields 112(3), 373–409 (1998)

    Article  MathSciNet  Google Scholar 

  5. S. Blanes, F. Casas, J.A. Oteo, J. Ros, Magnus expansion: mathematical study and physical applications. Phys. Rep. 470, 151–238 (2009)

    Article  MathSciNet  Google Scholar 

  6. P. Cartier, Vinberg algebras, Lie groups and combinatorics. Clay Math. Proc. 11, 107–126 (2011)

    MATH  Google Scholar 

  7. C. Curry, K. Ebrahimi-Fard, S.J.A. Malham, A. Wiese, Lévy processes and quasi-shuffle algebras. Stochastics 86(4), 632–642 (2014)

    Article  MathSciNet  Google Scholar 

  8. K. Ebrahimi-Fard, D. Manchon, A Magnus- and Fer-type formula in dendriform algebras. Found. Comput. Math. 9, 295–316 (2009)

    Article  MathSciNet  Google Scholar 

  9. K. Ebrahimi-Fard, S.J.A. Malham, F. Patras, A. Wiese, The exponential Lie series for continuous semimartingales. Proc. R. Soc. A 471, 20150429 (2015)

    Article  MathSciNet  Google Scholar 

  10. K. Ebrahimi-Fard, S.J.A. Malham, F. Patras, A. Wiese, Flows and stochastic Taylor series in Ito calculus. J. Phys. A Math. Theor. 48, 495202 (2015)

    Article  MathSciNet  Google Scholar 

  11. M. Emery, Stabilité des solutions des équations différentielles stochastiques application aux intégrales multiplicatives stochastiques. Z. Wahrscheinlichkeitstheorie verw. Gebiete 41, 241–262 (1978)

    Article  Google Scholar 

  12. M. Hakim-Dowek, D. Lépingle, L’exponentielle stochastique de groupes de Lie. Lec. Notes Math. 1204, 352–374 (1986)

    Article  MathSciNet  Google Scholar 

  13. R.L. Hudson, K.R. Parthasarathy, Quantum Itô’s formula and stochastic evolutions. Commun. Math. Phys. 93(3), 301–323 (1984)

    Article  Google Scholar 

  14. F. Jamshidian, On the combinatorics of iterated stochastic integrals. Stochastics 83(1), 1–15 (2011)

    Article  MathSciNet  Google Scholar 

  15. R.L. Karandikar, Multiplicative decomposition of non-singular matrix valued continuous semimartingales. Ann. Probab. 10, 1088–1091 (1982)

    Article  MathSciNet  Google Scholar 

  16. V. Kargin, On free stochastic differential equations. J. Theor. Probab. 24(3), 821–848 (2011)

    Article  MathSciNet  Google Scholar 

  17. W. Magnus, On the exponential solution of differential equations for a linear operator. Commun. Pure Appl. Math. 7, 649–673 (1954)

    Article  MathSciNet  Google Scholar 

  18. D. Manchon, A short survey on pre-Lie algebras, in Non-commutative Geometry and Physics: Renormalisation, Motives, Index Theory, ed. by A. Carey. E. Schrödinger Institut Lectures in Mathematics and Physics (European Mathematical Society, Helsinki, 2011)

    Google Scholar 

  19. B. Mielnik, J. Plebański, Combinatorial approach to Baker–Campbell–Hausdorff exponents. Ann. Inst. Henri Poincaré A XII, 215–254 (1970)

    Google Scholar 

  20. P.E. Protter, Stochastic Integration and Differential Equations, Version 2.1, 2nd edn. (Springer, Berlin, 2005)

    Google Scholar 

  21. R.S. Strichartz, The Campbell–Baker–Hausdorff–Dynkin formula and solutions of differential equations. J. Funct. Anal. 72, 320–345 (1987)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The research on this paper was partially supported by the Norwegian Research Council (project 231632).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurusch Ebrahimi-Fard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Curry, C., Ebrahimi-Fard, K., Patras, F. (2019). On Non-commutative Stochastic Exponentials. In: Radu, F., Kumar, K., Berre, I., Nordbotten, J., Pop, I. (eds) Numerical Mathematics and Advanced Applications ENUMATH 2017. ENUMATH 2017. Lecture Notes in Computational Science and Engineering, vol 126. Springer, Cham. https://doi.org/10.1007/978-3-319-96415-7_39

Download citation

Publish with us

Policies and ethics