Skip to main content

What Is a Post-Lie Algebra and Why Is It Useful in Geometric Integration

  • Conference paper
  • First Online:
Numerical Mathematics and Advanced Applications ENUMATH 2017 (ENUMATH 2017)

Abstract

We explain the notion of a post-Lie algebra and outline its role in the theory of Lie group integrators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Neglecting convergence of infinite series at this point.

References

  1. C. Bai, L. Guo, X. Ni, Nonabelian generalized Lax pairs, the classical Yang–Baxter equation and PostLie algebras. Commun. Math. Phys. 297(2), 553–596 (2010)

    Article  MathSciNet  Google Scholar 

  2. Ch. Brouder, Runge-Kutta methods and renormalization. Eur. Phys. J. C12, 512–534 (2000)

    Google Scholar 

  3. F. Chapoton, M. Livernet,Pre-Lie algebras and the rooted trees operad. Int. Math. Res. Not. 2001, 395–408 (2001)

    Article  MathSciNet  Google Scholar 

  4. F. Chapoton, F. Patras, Enveloping algebras of preLie algebras, Solomon idempotents and the Magnus formula. Int. J. Algebra Comput. 23(4), 853–861 (2013)

    Article  Google Scholar 

  5. Ph. Chartier, E. Hairer, G. Vilmart, Algebraic structures of B-series. Found. Comput. Math. 10, 407–427 (2010)

    Article  MathSciNet  Google Scholar 

  6. M.T. Chu, L.K. Norris, Isospectral flows and abstract matrix factorizations. SIAM J. Numer. Anal. 25, 1383–1391 (1988)

    Article  MathSciNet  Google Scholar 

  7. P. Deift, L.C. Li, C. Tomei, Matrix factorizations and integrable systems. Commun. Pure Appl. Math. 42(4), 443–521 (1989)

    Article  MathSciNet  Google Scholar 

  8. K. Ebrahimi-Fard, I. Mencattini, Post-Lie algebras, factorization theorems and Isospectral flows, arXiv:1711.02694

    Google Scholar 

  9. K. Ebrahimi-Fard, A. Lundervold, H.Z. Munthe-Kaas, On the Lie enveloping algebra of a post-Lie algebra. J. Lie Theory 25(4), 1139–1165 (2015)

    MathSciNet  MATH  Google Scholar 

  10. K. Ebrahimi-Fard, A. Lundervold, I. Mencattini, H.Z. Munthe-Kaas, Post-Lie algebras and Isospectral flows. SIGMA 25(11), 093 (2015)

    Google Scholar 

  11. K. Ebrahimi-Fard, I. Mencattini, H.Z. Munthe-Kaas,Post-Lie algebras and factorization theorems. J. Geom. Phys. 119, 19–33 (2017)

    Article  MathSciNet  Google Scholar 

  12. G. Fløystad, H. Munthe-Kaas, Pre- and Post-Lie Algebras: The Algebro-Geometric View. Abel Symposium Series (Springer, Berlin, 2018)

    Google Scholar 

  13. R. Grossman, R. Larson, Hopf algebraic structures of families of trees. J. Algebra 26, 184–210 (1989)

    Article  MathSciNet  Google Scholar 

  14. E. Hairer, C. Lubich, G. Wanner, Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations. Springer Series in Computational Mathematics, vol. 31 (Springer, Berlin, 2002)

    Google Scholar 

  15. A. Iserles, H.Z. Munthe-Kaas, S.P. Nørsett, A. Zanna, Lie-group methods. Acta Numer. 9, 215–365 (2000)

    Article  MathSciNet  Google Scholar 

  16. A. Lundervold, H.Z. Munthe-Kaas, On post-Lie algebras, Lie–Butcher series and moving frames. Found. Comput. Math. 13(4), 583–613 (2013)

    MATH  Google Scholar 

  17. D. Manchon, A short survey on pre-lie algebras, in Noncommutative Geometry and Physics: Renormalisation, Motives, Index Theory, ed. by A. Carey. E. Schrödinger Institut Lectures in Mathematics and Physics (European Mathematical Society, Helsinki, 2011)

    Google Scholar 

  18. R. McLachlan, K. Modin, H. Munthe-Kaas, O. Verdier, Butcher series: a story of rooted trees and numerical methods for evolution equations. Asia Pac. Math. Newsl. 7, 1–11 (2017)

    MathSciNet  Google Scholar 

  19. H. Munthe-Kaas, Lie–Butcher theory for Runge–Kutta methods. BIT Numer. Math. 35, 572–587 (1995)

    Article  MathSciNet  Google Scholar 

  20. H. Munthe-Kaas, Runge–Kutta methods on Lie groups. BIT Numer. Math. 38(1), 92–111 (1998)

    Article  MathSciNet  Google Scholar 

  21. H. Munthe-Kaas, W. Wright, On the Hopf Algebraic Structure of Lie Group Integrators. Found. Comput. Math. 8(2), 227–257 (2008)

    Article  MathSciNet  Google Scholar 

  22. B. Vallette, Homology of generalized partition posets. J. Pure Appl. Algebra 208(2), 699–725 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The research on this paper was partially supported by the Norwegian Research Council (project 231632).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Curry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Curry, C., Ebrahimi-Fard, K., Munthe-Kaas, H. (2019). What Is a Post-Lie Algebra and Why Is It Useful in Geometric Integration. In: Radu, F., Kumar, K., Berre, I., Nordbotten, J., Pop, I. (eds) Numerical Mathematics and Advanced Applications ENUMATH 2017. ENUMATH 2017. Lecture Notes in Computational Science and Engineering, vol 126. Springer, Cham. https://doi.org/10.1007/978-3-319-96415-7_38

Download citation

Publish with us

Policies and ethics