Skip to main content

Evolution of Load-Bearing Structures with Phase Field Modeling

  • Conference paper
  • First Online:
Numerical Mathematics and Advanced Applications ENUMATH 2017 (ENUMATH 2017)

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 126))

Included in the following conference series:

  • 1587 Accesses

Abstract

We suggest an algorithm to generate the topology of load-bearing structures with help of a phase field model. The objective function homogenizes equivalent stress within the isotropic elastic material. However, local inhomogeneities in the stress field, e.g., at concentrated loads, do not distract the convergence of the algorithm. Beside a certain threshold in the equivalent stress field, the desired filling level of the design space is the main parameter of our objective function. The phase field parameter describes the density and stiffness of the substance in a closed interval. An Allen-Cahn equation regulates the phase transition, which is not conserving the mass of the system. The model evolves continuous regions of voids or dense material, whereas voids retain an infinitesimal residual stiffness, which is a million times smaller than the stiffness of the dense material. The evolution of structures is discussed by numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Allaire, F. Jouve, A. Toader, Structural optimization using sensitivity analysis and a level-set method. J. Comput. Phys. 194, 363–393 (2004)

    Article  MathSciNet  Google Scholar 

  2. M. Bendsøe, Optimal shape design as a material distribution problem. Struct. Optim. 1(4), 193–202 (1989)

    Article  Google Scholar 

  3. M. Bendsøe, N. Kikuchi, Generating optimal topologies in structural design using a homogenization method. Comput. Methods Appl. Mech. Eng. 71, 197–224 (1988)

    Article  MathSciNet  Google Scholar 

  4. J. Cahn, S. Allen, A microscopic theory for domain wall motion and its experimental verification in fe-al alloy domain growth kinetics. J. de Physique Colloques 38(C7), 51–54 (1977)

    Google Scholar 

  5. J. Deaton, R. Grandhi, A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct. Multidiscip. Optim. 49, 1–38 (2014)

    Article  MathSciNet  Google Scholar 

  6. C. Le, J. Norato, T. Bruns, C. Ha, D. Tortorelli, Stress-based topology optimization for continua. Struct. Multidiscip. Optim. 41(4), 605–620 (2010)

    Article  Google Scholar 

  7. I. Münch, Ch. Gierden, W. Wagner, A phase field model for stress based evolution of load-bearing structures. Int. J. Numer. Methods Eng., 1–21 (2018). https://doi.org/10.1002/nme.5909

    Google Scholar 

  8. D. Munk, G. Vio, G. Steven, Topology and shape optimization methods using evolutionary algorithms: a review. Struct. Multidiscip. Optim. 52, 613–631 (2015)

    Article  MathSciNet  Google Scholar 

  9. G. Rozvany, On design-dependent constraints and singular topologies. Struct. Multidiscip. Optim. 21(2), 164–172 (2001)

    Article  MathSciNet  Google Scholar 

  10. O. Sigmund, K. Maute, Topology optimization approaches. Struct. Multidiscip. Optim. 48, 1031–1055 (2013)

    Article  MathSciNet  Google Scholar 

  11. N. van Dijk, K. Maute, M. Langelaar, F. van Keulen, Level-set methods for structural topology optimization: a review. Struct. Multidiscip. Optim. 48(3), 437–472 (2013)

    Article  MathSciNet  Google Scholar 

  12. M. Wang, X. Wang, D. Guo, A level set method for structural topology optimization. Comput. Methods Appl. Mech. Eng. 192, 227–246 (2003)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingo Muench .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Muench, I. (2019). Evolution of Load-Bearing Structures with Phase Field Modeling. In: Radu, F., Kumar, K., Berre, I., Nordbotten, J., Pop, I. (eds) Numerical Mathematics and Advanced Applications ENUMATH 2017. ENUMATH 2017. Lecture Notes in Computational Science and Engineering, vol 126. Springer, Cham. https://doi.org/10.1007/978-3-319-96415-7_29

Download citation

Publish with us

Policies and ethics