Skip to main content

PDE Apps for Acoustic Ducts: A Parametrized Component-to-System Model-Order-Reduction Approach

  • Conference paper
  • First Online:
Numerical Mathematics and Advanced Applications ENUMATH 2017 (ENUMATH 2017)

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 126))

Included in the following conference series:

  • 1671 Accesses

Abstract

We present an SCRBE PDE App framework for accurate and interactive calculation and visualization of the parametric dependence of the pressure field and associated Quantities of Interest (QoI)—such as impedance and transmission loss—for an extensive family of acoustic duct models. The Static Condensation Reduced Basis Element (SCRBE) partial differential equation (PDE) numerical approach incorporates several principal ingredients: component-to-system model construction, underlying “truth” finite element PDE discretization, (Petrov)-Galerkin projection, static condensation at the component level, parametrized model-order reduction for both the inter-component (port) and intra-component (bubble) degrees of freedom, and offline-online computational decompositions; we emphasize in this paper reduced port spaces and QoI evaluation techniques, especially frequency sweeps, particularly germane to the acoustics context. A PDE App constitutes a Web User Interface (WUI) implementation of the online, or deployed, stage of the SCRBE approximation for a particular parametrized model: User model parameter inputs to the WUI are interpreted by a PDE App Server which then invokes a parallel cloud-based SCRBE Online Computation Server for calculation of the pressure and associated QoI; the Online Computation Server then downloads the spatial field and scalar outputs (as a function of frequency) to the PDE App Server for interrogation and visualization in the WUI by the User. We present several examples of acoustic-duct PDE Apps: the exponential horn, the expansion chamber, and the toroidal bend; in each case we verify accuracy, demonstrate capabilities, and assess computational performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A first realization of the PDE App concept is provided in [13], however the latter invokes a much simpler and less general model order reduction approach—the Reduced Basis method but without components—that is furthermore restricted by an “onboard” implementation which is much less powerful than the web cloud formulation described in the current paper.

  2. 2.

    We note that Eq. (2) (IW), and also Eq. (2) (R) in the Sommerfeld case, can be slightly improved: for Eq. (2) (IW) in the term ik(p − 2p inc) and for Eq. (2) (R) in the term ikp we might replace k with \(k^{\mathrm {d}} = k/\sqrt {1 + \text{i} k \epsilon }\). However, the dissipation term is extremely small, and hence the effect of this improvement correspondingly unimportant.

  3. 3.

    The Minimal Component Dataset is not small, but it is loaded by the WUI only upon launch of a particular parametrized model; the per-query response is thus not affected.

References

  1. B. Almroth, P. Stern, F.A. Brogan, Automatic choice of global shape functions in structural analysis. AIAA J. 16(5), 525–528 (1978)

    Article  Google Scholar 

  2. P.R. Amestoy, A. Guermouche, J.Y. L’Excellent, S. Pralet, Hybrid scheduling for the parallel solution of linear systems. Parallel Comput. 32(2), 136–156 (2006)

    Article  MathSciNet  Google Scholar 

  3. I. Babuška, R. Lipton, Optimal local approximation spaces for generalized finite element methods with application to multiscale problems. Multiscale Model. Simul. 9, 373–406 (2011)

    Article  MathSciNet  Google Scholar 

  4. S. Balay, W.D. Gropp, L. Curfman McInnes, B.F. Smith, Efficient management of parallelism in object oriented numerical software libraries, in Modern Software Tools in Scientific Computing, ed. by E. Arge, A.M. Bruaset, H.P. Langtangen (Birkhäuser Press, Boston, 1997), pp. 163–202

    Chapter  Google Scholar 

  5. M. Barrault, Y. Maday, N. Nguyen, A.T. Patera, An empirical interpolation method: application to efficient reduced-basis discretization of partial differential equations. CR Acad. Sci. Paris Ser. I 339, 667–672 (2004)

    Article  MathSciNet  Google Scholar 

  6. P. Binev, A. Cohen, R. Dahmen, G. Petrova, P. Wojtaszczyk, Convergence rates for greedy algorithms in reduced basis methods. SIAM J. Math. Anal. 43(3), 1457–1472 (2011)

    Article  MathSciNet  Google Scholar 

  7. D.T. Blackstock, Fundamentals of Physical Acoustics, 1st edn. (Wiley, Hoboken, 2000)

    Google Scholar 

  8. R.J. Craig, M. Bampton, Coupling of substructures for dynamic analyses. AIAA J. 3(4), 678–685 (1968)

    MATH  Google Scholar 

  9. J.L. Eftang, A.T. Patera, Port reduction in component-based static condensation for parametrized problems: approximation and a posteriori error estimation. Int. J. Numer. Methods Eng. 96(5), 269–302 (2013)

    MATH  Google Scholar 

  10. S. Félix, J.-P. Dalmont, C.J. Nederveen, Effects of bending portions of the air column on the acoustical resonances of a wind instrument. J. Acoust. Soc. Am. 131(5), 4164–4172 (2012)

    Article  Google Scholar 

  11. U. Hetmaniuk, R. Lehoucq, A special finite element method based on component mode synthesis. Math. Model. Numer. Anal. 44(3), 401–421 (2010)

    Article  MathSciNet  Google Scholar 

  12. W.C. Hurty, On the dynamics of structural systems using component modes. AIAA Paper No. 64–487 (1964)

    Google Scholar 

  13. D.B.P. Huynh, D.J. Knezevic, J.W. Peterson, A.T. Patera, High-fidelity real-time simulation on deployed platforms. Comput. Fluids 43(1), 74–81 (2011)

    Article  MathSciNet  Google Scholar 

  14. P. Huynh, D.J. Knezevic, A.T. Patera, A static condensation reduced basis element method: approximation and a posteriori error estimation. Math. Model. Numer. Anal. 47(1), 213–251 (2013)

    Article  MathSciNet  Google Scholar 

  15. P. Huynh, D.J. Knezevic, A.T. Patera, A static condensation reduced basis element method: complex problems. Comput. Methods Appl. Mech. Eng. 259, 197–216 (2013)

    Article  MathSciNet  Google Scholar 

  16. F. Ihlenburg, I. Babuška, Finite element solution of the Helmholtz equation with high wave number. Part I: The h-version of the FEM. Comput. Math. Appl. 30(9), 9–37 (1995)

    MathSciNet  MATH  Google Scholar 

  17. B.S. Kirk, J.W. Peterson, R.M. Stogner, G.F. Carey, libMesh: a C++ library for parallel adaptive mesh refinement/coarsening simulations. Eng. Comput. 23(3–4), 237–254 (2006)

    Article  Google Scholar 

  18. Y. Maday, E.M. Rønquist, The reduced basis element method: application to a thermal fin problem. SIAM J. Sci. Comput. 26(1), 240–258 (2004)

    Article  MathSciNet  Google Scholar 

  19. K.J. McMahon, A comparison of the transfer matrix method and the finite element method for the claculation of the transmission loss in a single expansion chamber muffler. Master’s thesis, RPI Hartford, December 2014

    Google Scholar 

  20. J.L. Munjal, Acoustics of Ducts and Mufflers, 2nd edn. (Wiley, Hoboken, 2014)

    Google Scholar 

  21. A.K. Noor, J.M. Peters, Reduced basis technique for nonlinear analysis of structures. AIAA J. 18(4), 455–462 (1980)

    Article  Google Scholar 

  22. A Pinkus, N-Widths in Approximation Theory (Springer Science and Business Media, New York, 1985)

    Book  Google Scholar 

  23. J.T. Post, E.L. Hixson, A modeling and measurement study of acoustic horns. Ph.D. Thesis, University of Texas at Austin, May 1994

    Article  Google Scholar 

  24. G. Rozza, D.B.P. Huynh, A.T. Patera, Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations. Arch. Comput. Methods Eng. 15(3), 229–275 (2008)

    Article  MathSciNet  Google Scholar 

  25. A. Selamet, Z.L. Ji, Acoustic attenuation performance of circular expansion chambers with extended inlet/outlet. J. Sound Vib. 223(2), 197–212 (1999)

    Article  Google Scholar 

  26. A. Selamet, P.M. Radavich, The effect of length on the acoustic attenuation performance of concentric expansion chambers: an analytical, computational and experimental investigation. J. Sound Vib. 201(4), 407–426 (1997)

    Article  Google Scholar 

  27. K. Smetana, A.T. Patera, Optimal local approximation spaces for component-based static condensation procedures. SIAM J. Sci. Comput. 38(5), A3318–A3356 (2016)

    Article  MathSciNet  Google Scholar 

  28. K. Veroy, C. Prud’homme, D.V. Rovas, A.T. Patera, A posteriori error bounds for reduced-basis approximation of parametrized noncoercive and nonlinear elliptic partial differential equations. AIAA Paper No. 2003–3847 (2003), pp. 1–18

    Google Scholar 

  29. E.L. Wilson, The static condensation algorithm. Int. J. Numer. Methods Eng. 8(1), 198–203 (1974)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Professor Masayuki Yano of University of Toronto for his contributions to the formulation and verification of the PDE Apps, Dr Sylvain Vallaghé of Akselos for his generous assistance in the FE verification of SCRBE resonances, Professor Kathrin Smetana of the University of Twente for valuable discussions related to the transfer eigenproblem, Professor Peter Dahl of University of Washington and Professor Jer-Ming Chen of Singapore University of Technology and Design (SUTD) for insightful reviews of earlier acoustic PDE Apps, Thomas Leurent of Akselos for his strong support of PDE Apps for education, and Thuc Nguyen of Akselos for his contributions to the web platform. This work was supported by the Swiss Confederations Innovation Promotion Agency (CTI) under Grant 17802.1 PFIW-IW (JB), ONR Contracts N00014-11-1-0713 and N00014-17-1-2077, OSD/AFOSR Grant FA9550-09-0613, SUTD International Design Center, and an MIT Ford Professorship (ATP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony T. Patera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ballani, J., Huynh, P., Knezevic, D., Nguyen, L., Patera, A.T. (2019). PDE Apps for Acoustic Ducts: A Parametrized Component-to-System Model-Order-Reduction Approach. In: Radu, F., Kumar, K., Berre, I., Nordbotten, J., Pop, I. (eds) Numerical Mathematics and Advanced Applications ENUMATH 2017. ENUMATH 2017. Lecture Notes in Computational Science and Engineering, vol 126. Springer, Cham. https://doi.org/10.1007/978-3-319-96415-7_1

Download citation

Publish with us

Policies and ethics