Skip to main content

Gene Therapy in Pediatric Liver Disease

  • Chapter
  • First Online:

Abstract

The liver is an attractive organ for the development of gene-based therapeutic approaches. In the recent years, gene therapy for monogenic diseases of the liver using recombinant adeno-associated virus (rAAV) has shown safety and in some cases efficacy in clinical trials in adult subjects with hemophilia A and B and acute intermittent porphyria. Multi-year expression of the transgenes has been documented, making liver gene therapy a promising curative treatment. The success is consequent to more than two decades of experimentation in small- and large-animal models and humans. This work allowed investigators to understand and overcome some of the major immunological hurdles, such as humoral and cellular responses to the vector. However, due to the loss of viral DNA during hepatocyte proliferation, AAV vector-mediated liver gene transfer is predicted to be less durable in neonatal and pediatric subjects. Modulation of the antibody response against the viral capsid is being explored to allow for readministration of the vector. Alternatively, the permanent modification of the hepatocyte genome in vivo could overcome this limitation.

This chapter focuses on different gene therapy approaches that can be applied to cure monogenic liver diseases. The basic concepts of gene replacement therapy are presented. Key experiments in animal models, as well as innovative approaches based in the use of engineered endonucleases to modify permanently the hepatocyte genome are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Blaese RM, Culver KW, Miller AD, Carter CS, Fleisher T, Clerici M, et al. T lymphocyte-directed gene therapy for ADA- SCID: initial trial results after 4 years. Science. 1995;270(5235):475–80.

    Article  CAS  PubMed  Google Scholar 

  2. Bordignon C, Notarangelo LD, Nobili N, Ferrari G, Casorati G, Panina P, et al. Gene therapy in peripheral blood lymphocytes and bone marrow for ADA- immunodeficient patients. Science. 1995;270(5235):470–5.

    Article  CAS  PubMed  Google Scholar 

  3. Raper SE, Chirmule N, Lee FS, Wivel NA, Bagg A, Gao GP, et al. Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol Genet Metab. 2003;80(1–2):148–58.

    Article  CAS  PubMed  Google Scholar 

  4. Cavazzana-Calvo M, Hacein-Bey S, de Saint Basile G, Gross F, Yvon E, Nusbaum P, et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science. 2000;288(5466):669–72.

    Article  CAS  PubMed  Google Scholar 

  5. Hacein-Bey-Abina S, von Kalle C, Schmidt M, Le Deist F, Wulffraat N, McIntyre E, et al. A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N Engl J Med. 2003;348(3):255–6.

    Article  PubMed  Google Scholar 

  6. Mukherjee S, Thrasher AJ. Gene therapy for PIDs: progress, pitfalls and prospects. Gene. 2013;525(2):174–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mingozzi F, High KA. Immune responses to AAV in clinical trials. Curr Gene Ther. 2007;7(5):316–24.

    Article  CAS  PubMed  Google Scholar 

  8. Russell S, Bennett J, Wellman JA, Chung DC, Yu ZF, Tillman A, et al. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: a randomised, controlled, open-label, phase 3 trial. Lancet. 2017;390(10097):849–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bainbridge JW, Smith AJ, Barker SS, Robbie S, Henderson R, Balaggan K, et al. Effect of gene therapy on visual function in Leber’s congenital amaurosis. N Engl J Med. 2008;358(21):2231–9.

    Article  CAS  PubMed  Google Scholar 

  10. Maguire AM, Simonelli F, Pierce EA, Pugh EN Jr, Mingozzi F, Bennicelli J, et al. Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N Engl J Med. 2008;358(21):2240–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cartier N, Hacein-Bey-Abina S, Bartholomae CC, Veres G, Schmidt M, Kutschera I, et al. Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science. 2009;326(5954):818–23.

    Article  CAS  PubMed  Google Scholar 

  12. Biffi A, Montini E, Lorioli L, Cesani M, Fumagalli F, Plati T, et al. Lentiviral hematopoietic stem cell gene therapy benefits metachromatic leukodystrophy. Science. 2013;341(6148):1233158.

    Article  PubMed  CAS  Google Scholar 

  13. Nathwani AC, Reiss UM, Tuddenham EG, Rosales C, Chowdary P, McIntosh J, et al. Long-term safety and efficacy of factor IX gene therapy in hemophilia B. N Engl J Med. 2014;371(21):1994–2004.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Nathwani AC, Tuddenham EG, Rangarajan S, Rosales C, McIntosh J, Linch DC, et al. Adenovirus-associated virus vector-mediated gene transfer in hemophilia B. N Engl J Med. 2011;365(25):2357–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. George LA, Sullivan SK, Giermasz A, Rasko JEJ, Samelson-Jones BJ, Ducore J, et al. Hemophilia B gene therapy with a high-specific-activity factor IX variant. N Engl J Med. 2017;377(23):2215–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fagiuoli S, Daina E, D’Antiga L, Colledan M, Remuzzi G. Monogenic diseases that can be cured by liver transplantation. J Hepatol. 2013;59(3):595–612.

    Article  PubMed  Google Scholar 

  17. Lachmann RH. Enzyme replacement therapy for lysosomal storage diseases. Curr Opin Pediatr. 2011;23(6):588–93.

    Article  CAS  PubMed  Google Scholar 

  18. D’Antiga L, Colledan M. Surgical gene therapy by domino auxiliary liver transplantation. Liver Transplant. 2015;21(11):1338–9.

    Article  Google Scholar 

  19. Kasahara M, Sakamoto S, Horikawa R, Koji U, Mizuta K, Shinkai M, et al. Living donor liver transplantation for pediatric patients with metabolic disorders: the Japanese multicenter registry. Pediatr Transplant. 2014;18(1):6–15.

    Article  PubMed  Google Scholar 

  20. Vara R, Turner C, Mundy H, Heaton ND, Rela M, Mieli-Vergani G, et al. Liver transplantation for propionic acidemia in children. Liver Transplant. 2011;17(6):661–7.

    Article  Google Scholar 

  21. Wang L, Wang H, Bell P, McMenamin D, Wilson JM. Hepatic gene transfer in neonatal mice by adeno-associated virus serotype 8 vector. Hum Gene Ther. 2012;23(5):533–9.

    Article  CAS  PubMed  Google Scholar 

  22. Bortolussi G, Zentilin L, Vanikova J, Bockor L, Bellarosa C, Mancarella A, et al. Life-long correction of hyperbilirubinemia with a neonatal liver-specific AAV-mediated gene transfer in a lethal mouse model of Crigler Najjar syndrome. Hum Gene Ther. 2014;25(9):844–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cunningham SC, Dane AP, Spinoulas A, Logan GJ, Alexander IE. Gene delivery to the juvenile mouse liver using AAV2/8 vectors. Mol Ther. 2008;16(6):1081–8.

    Article  CAS  PubMed  Google Scholar 

  24. Coppoletta JM, Wolbach SB. Body length and organ weights of infants and children: a study of the body length and normal weights of the more important vital organs of the body between birth and twelve years of age. Am J Pathol. 1933;9(1):55–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Garby L, Lammert O, Kock KF, Thobo-Carlsen B. Weights of brain, heart, liver, kidneys, and spleen in healthy and apparently healthy adult Danish subjects. Am J Hum Biol. 1993;5(3):291–6.

    Article  CAS  PubMed  Google Scholar 

  26. Hansen K, Horslen S. Metabolic liver disease in children. Liver Transplant. 2008;14(4):391–411.

    Article  Google Scholar 

  27. Junge N, Mingozzi F, Ott M, Baumann U. Adeno-associated virus vector-based gene therapy for monogenetic metabolic diseases of the liver. J Pediatr Gastroenterol Nutr. 2015;60(4):433–40.

    Article  CAS  PubMed  Google Scholar 

  28. Kay MA, Glorioso JC, Naldini L. Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nat Med. 2001;7(1):33–40.

    Article  CAS  PubMed  Google Scholar 

  29. Hardee CL, Arevalo-Soliz LM, Hornstein BD, Zechiedrich L. Advances in non-viral DNA vectors for gene therapy. Genes. 2017;8(2):65.

    Article  PubMed Central  CAS  Google Scholar 

  30. Miller DG, Adam MA, Miller AD. Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection. Mol Cell Biol. 1990;10(8):4239–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hacein-Bey-Abina S, Garrigue A, Wang GP, Soulier J, Lim A, Morillon E, et al. Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J Clin Invest. 2008;118(9):3132–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P, et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science. 2003;302(5644):415–9.

    Article  CAS  PubMed  Google Scholar 

  33. Ribeil JA, Hacein-Bey-Abina S, Payen E, Magnani A, Semeraro M, Magrin E, et al. Gene therapy in a patient with sickle cell disease. N Engl J Med. 2017;376(9):848–55.

    Article  CAS  PubMed  Google Scholar 

  34. Suzuki Y, Craigie R. The road to chromatin—nuclear entry of retroviruses. Nat Rev Microbiol. 2007;5(3):187–96.

    Article  CAS  PubMed  Google Scholar 

  35. Naldini L. Ex vivo gene transfer and correction for cell-based therapies. Nat Rev Genet. 2011;12(5):301–15.

    Article  CAS  PubMed  Google Scholar 

  36. Kotterman MA, Chalberg TW, Schaffer DV. Viral vectors for gene therapy: translational and clinical outlook. Annu Rev Biomed Eng. 2015;17:63–89.

    Article  CAS  PubMed  Google Scholar 

  37. Aiuti A, Biasco L, Scaramuzza S, Ferrua F, Cicalese MP, Baricordi C, et al. Lentiviral hematopoietic stem cell gene therapy in patients with Wiskott-Aldrich syndrome. Science. 2013;341(6148):1233151.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Cavazzana-Calvo M, Payen E, Negre O, Wang G, Hehir K, Fusil F, et al. Transfusion independence and HMGA2 activation after gene therapy of human beta-thalassaemia. Nature. 2010;467(7313):318–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Campochiaro PA, Lauer AK, Sohn EH, Mir TA, Naylor S, Anderton MC, et al. Lentiviral vector gene transfer of endostatin/angiostatin for macular degeneration (GEM) study. Hum Gene Ther. 2017;28(1):99–111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dalkara D, Goureau O, Marazova K, Sahel JA. Let there be light: gene and Cell therapy for blindness. Hum Gene Ther. 2016;27(2):134–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Palfi S, Gurruchaga JM, Ralph GS, Lepetit H, Lavisse S, Buttery PC, et al. Long-term safety and tolerability of ProSavin, a lentiviral vector-based gene therapy for Parkinson’s disease: a dose escalation, open-label, phase 1/2 trial. Lancet. 2014;383(9923):1138–46.

    Article  CAS  PubMed  Google Scholar 

  42. Cantore A, Annoni A, Lui T, Bartolaccini S, Biffi M, Russo F, et al. Liver-directed gene therapy for hemophilia B with immune stealth lentiviral vectors. Blood. 2017;130(Suppl 1):605.

    Google Scholar 

  43. Cantore A, Ranzani M, Bartholomae CC, Volpin M, Valle PD, Sanvito F, et al. Liver-directed lentiviral gene therapy in a dog model of hemophilia B. Sci Transl Med. 2015;7(277):277ra28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Milani M, Annoni A, Bartolaccini S, Biffi M, Russo F, Di Tomaso T, et al. Genome editing for scalable production of alloantigen-free lentiviral vectors for in vivo gene therapy. EMBO Mol Med. 2017;9(11):1558–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cotmore SF, Tattersall P. Parvoviruses: small does not mean simple. Annu Rev Virol. 2014;1(1):517–37.

    Article  PubMed  CAS  Google Scholar 

  46. Niemeyer GP, Herzog RW, Mount J, Arruda VR, Tillson DM, Hathcock J, et al. Long-term correction of inhibitor-prone hemophilia B dogs treated with liver-directed AAV2-mediated factor IX gene therapy. Blood. 2009;113(4):797–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Buchlis G, Podsakoff GM, Radu A, Hawk SM, Flake AW, Mingozzi F, et al. Factor IX expression in skeletal muscle of a severe hemophilia B patient 10 years after AAV-mediated gene transfer. Blood. 2012;119(13):3038–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Smith RH. Adeno-associated virus integration: virus versus vector. Gene Ther. 2008;15(11):817–22.

    Article  CAS  PubMed  Google Scholar 

  49. Kaeppel C, Beattie SG, Fronza R, van Logtenstein R, Salmon F, Schmidt S, et al. A largely random AAV integration profile after LPLD gene therapy. Nat Med. 2013;19(7):889–91.

    Article  CAS  PubMed  Google Scholar 

  50. Nakai H, Wu X, Fuess S, Storm TA, Munroe D, Montini E, et al. Large-scale molecular characterization of adeno-associated virus vector integration in mouse liver. J Virol. 2005;79(6):3606–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Donsante A, Miller DG, Li Y, Vogler C, Brunt EM, Russell DW, et al. AAV vector integration sites in mouse hepatocellular carcinoma. Science. 2007;317(5837):477.

    Article  CAS  PubMed  Google Scholar 

  52. Li H, Malani N, Hamilton SR, Schlachterman A, Bussadori G, Edmonson SE, et al. Assessing the potential for AAV vector genotoxicity in a murine model. Blood. 2011;117(12):3311–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chandler RJ, LaFave MC, Varshney GK, Trivedi NS, Carrillo-Carrasco N, Senac JS, et al. Vector design influences hepatic genotoxicity after adeno-associated virus gene therapy. J Clin Invest. 2015;125(2):870–80.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Chandler RJ, LaFave MC, Varshney GK, Burgess SM, Venditti CP. Genotoxicity in mice following AAV gene delivery: a safety concern for human gene therapy? Mol Ther. 2016;24(2):198–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Nathwani AC, Rosales C, McIntosh J, Rastegarlari G, Nathwani D, Raj D, et al. Long-term safety and efficacy following systemic administration of a self-complementary AAV vector encoding human FIX pseudotyped with serotype 5 and 8 capsid proteins. Mol Ther. 2011;19(5):876–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nault JC, Datta S, Imbeaud S, Franconi A, Mallet M, Couchy G, et al. Recurrent AAV2-related insertional mutagenesis in human hepatocellular carcinomas. Nat Genet. 2015;47(10):1187–93.

    Article  CAS  PubMed  Google Scholar 

  57. Asokan A, Schaffer DV, Samulski RJ. The AAV vector toolkit: poised at the clinical crossroads. Mol Ther. 2012;20(4):699–708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lisowski L, Dane AP, Chu K, Zhang Y, Cunningham SC, Wilson EM, et al. Selection and evaluation of clinically relevant AAV variants in a xenograft liver model. Nature. 2014;506(7488):382–6.

    Article  CAS  PubMed  Google Scholar 

  59. Wu Z, Asokan A, Samulski RJ. Adeno-associated virus serotypes: vector toolkit for human gene therapy. Mol Ther. 2006;14(3):316–27.

    Article  CAS  PubMed  Google Scholar 

  60. Pillay S, Meyer NL, Puschnik AS, Davulcu O, Diep J, Ishikawa Y, et al. An essential receptor for adeno-associated virus infection. Nature. 2016;530(7588):108–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hastie E, Samulski RJ. Recombinant adeno-associated virus vectors in the treatment of rare diseases. Expert Opin Orphan Drugs. 2015;3(6):675–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mingozzi F, High KA. Therapeutic in vivo gene transfer for genetic disease using AAV: progress and challenges. Nat Rev Genet. 2011;12(5):341–55.

    Article  CAS  PubMed  Google Scholar 

  63. Colella P, Ronzitti G, Mingozzi F. Emerging issues in AAV-mediated in vivo gene therapy. Mol Ther Methods Clin Dev. 2018;8:87–104.

    Article  CAS  PubMed  Google Scholar 

  64. Mingozzi F, High KA. Immune responses to AAV vectors: overcoming barriers to successful gene therapy. Blood. 2013;122(1):23–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Dong JY, Fan PD, Frizzell RA. Quantitative analysis of the packaging capacity of recombinant adeno-associated virus. Hum Gene Ther. 1996;7(17):2101–12.

    Article  CAS  PubMed  Google Scholar 

  66. Frank-Kamenetsky M, Grefhorst A, Anderson NN, Racie TS, Bramlage B, Akinc A, et al. Therapeutic RNAi targeting PCSK9 acutely lowers plasma cholesterol in rodents and LDL cholesterol in nonhuman primates. Proc Natl Acad Sci U S A. 2008;105(33):11915–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Fitzgerald K, Frank-Kamenetsky M, Shulga-Morskaya S, Liebow A, Bettencourt BR, Sutherland JE, et al. Effect of an RNA interference drug on the synthesis of proprotein convertase subtilisin/kexin type 9 (PCSK9) and the concentration of serum LDL cholesterol in healthy volunteers: a randomised, single-blind, placebo-controlled, phase 1 trial. Lancet. 2014;383(9911):60–8.

    Article  CAS  PubMed  Google Scholar 

  68. Fitzgerald K, White S, Borodovsky A, Bettencourt BR, Strahs A, Clausen V, et al. A highly durable RNAi therapeutic inhibitor of PCSK9. N Engl J Med. 2017;376(1):41–51.

    Article  CAS  PubMed  Google Scholar 

  69. Guo S, Booten SL, Aghajan M, Hung G, Zhao C, Blomenkamp K, et al. Antisense oligonucleotide treatment ameliorates alpha-1 antitrypsin-related liver disease in mice. J Clin Invest. 2014;124(1):251–61.

    Article  CAS  PubMed  Google Scholar 

  70. Rangaranjan S, Walsh L, Lester W, Perry D, Madan B, Laffan M, et al. AAV5-factor VIII gene transfer in severe hemophilia A. N Engl J Med. 2017;377:2519–30.

    Article  Google Scholar 

  71. D’Avola D, Lopez-Franco E, Sangro B, Paneda A, Grossios N, Gil-Farina I, et al. Phase I open label liver-directed gene therapy clinical trial for acute intermittent porphyria. J Hepatol. 2016;65(4):776–83.

    Article  PubMed  CAS  Google Scholar 

  72. Manno CS, Pierce GF, Arruda VR, Glader B, Ragni M, Rasko JJ, et al. Successful transduction of liver in hemophilia by AAV-factor IX and limitations imposed by the host immune response. Nat Med. 2006;12(3):342–7.

    Article  CAS  PubMed  Google Scholar 

  73. Miesbach W, Meijer K, Coppens M, Kampmann P, Klamroth R, Schutgens R, et al. Gene therapy with adeno-associated virus vector 5-human factor IX in adults with hemophilia B. Blood. 2018;131(9):1022–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Mannucci PM, Tuddenham EG. The hemophilias—from royal genes to gene therapy. N Engl J Med. 2001;344(23):1773–9.

    Article  CAS  PubMed  Google Scholar 

  75. Soucie JM, Nuss R, Evatt B, Abdelhak A, Cowan L, Hill H, et al. Mortality among males with hemophilia: relations with source of medical care. The Hemophilia Surveillance System Project Investigators. Blood. 2000;96(2):437–42.

    CAS  PubMed  Google Scholar 

  76. White GC 2nd, Rosendaal F, Aledort LM, Lusher JM, Rothschild C, Ingerslev J, et al. Definitions in hemophilia. Recommendation of the scientific subcommittee on factor VIII and factor IX of the scientific and standardization committee of the International Society on Thrombosis and Haemostasis. Thromb Haemost. 2001;85(3):560.

    Article  CAS  PubMed  Google Scholar 

  77. Rangarajan S, Walsh L, Lester W, Perry D, Madan B, Laffan M, et al. AAV5-factor VIII gene transfer in severe hemophilia A. N Engl J Med. 2017;377(26):2519–30.

    Article  CAS  PubMed  Google Scholar 

  78. Jiang H, Pierce GF, Ozelo MC, de Paula EV, Vargas JA, Smith P, et al. Evidence of multiyear factor IX expression by AAV-mediated gene transfer to skeletal muscle in an individual with severe hemophilia B. Mol Ther. 2006;14(3):452–5.

    Article  CAS  PubMed  Google Scholar 

  79. Mount JD, Herzog RW, Tillson DM, Goodman SA, Robinson N, McCleland ML, et al. Sustained phenotypic correction of hemophilia B dogs with a factor IX null mutation by liver-directed gene therapy. Blood. 2002;99(8):2670–6.

    Article  CAS  PubMed  Google Scholar 

  80. Sabatino DE, Armstrong E, Edmonson S, Liu YL, Pleimes M, Schuettrumpf J, et al. Novel hemophilia B mouse models exhibiting a range of mutations in the factor IX gene. Blood. 2004;104(9):2767–74.

    Article  CAS  PubMed  Google Scholar 

  81. Arruda VR. Toward gene therapy for hemophilia A with novel adenoviral vectors: successes and limitations in canine models. J Thromb Haemost. 2006;4(6):1215–7.

    Article  CAS  PubMed  Google Scholar 

  82. Sabatino DE, Nichols TC, Merricks E, Bellinger DA, Herzog RW, Monahan PE. Animal models of hemophilia. Prog Mol Biol Transl Sci. 2012;105:151–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Arruda VR, Doshi BS, Samelson-Jones BJ. Novel approaches to hemophilia therapy: successes and challenges. Blood. 2017;130(21):2251–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Crudele JM, Finn JD, Siner JI, Martin NB, Niemeyer GP, Zhou S, et al. AAV liver expression of FIX-Padua prevents and eradicates FIX inhibitor without increasing thrombogenicity in hemophilia B dogs and mice. Blood. 2015;125(10):1553–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Finn JD, Nichols TC, Svoronos N, Merricks EP, Bellenger DA, Zhou S, et al. The efficacy and the risk of immunogenicity of FIX Padua (R338L) in hemophilia B dogs treated by AAV muscle gene therapy. Blood. 2012;120(23):4521–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Cantore A, Nair N, Della Valle P, Di Matteo M, Matrai J, Sanvito F, et al. Hyperfunctional coagulation factor IX improves the efficacy of gene therapy in hemophilic mice. Blood. 2012;120(23):4517–20.

    Article  CAS  PubMed  Google Scholar 

  87. Monahan PE, Sun J, Gui T, Hu G, Hannah WB, Wichlan DG, et al. Employing a gain-of-function factor IX variant R338L to advance the efficacy and safety of hemophilia B human gene therapy: preclinical evaluation supporting an ongoing adeno-associated virus clinical trial. Hum Gene Ther. 2015;26(2):69–81.

    Article  CAS  PubMed  Google Scholar 

  88. Graham T, McIntosh J, Work LM, Nathwani A, Baker AH. Performance of AAV8 vectors expressing human factor IX from a hepatic-selective promoter following intravenous injection into rats. Genet Vaccines Ther. 2008;6:9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Nathwani AC, Gray JT, McIntosh J, Ng CY, Zhou J, Spence Y, et al. Safe and efficient transduction of the liver after peripheral vein infusion of self-complementary AAV vector results in stable therapeutic expression of human FIX in nonhuman primates. Blood. 2007;109(4):1414–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Nathwani AC, Gray JT, Ng CY, Zhou J, Spence Y, Waddington SN, et al. Self-complementary adeno-associated virus vectors containing a novel liver-specific human factor IX expression cassette enable highly efficient transduction of murine and nonhuman primate liver. Blood. 2006;107(7):2653–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Vercauteren K, Hoffman BE, Zolotukhin I, Keeler GD, Xiao JW, Basner-Tschakarjan E, et al. Superior in vivo transduction of human hepatocytes using engineered AAV3 capsid. Mol Ther. 2016;24(6):1042–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Crigler JF Jr, Najjar VA. Congenital familial nonhemolytic jaundice with kernicterus. Pediatrics. 1952;10(2):169–80.

    PubMed  Google Scholar 

  93. Strauss KA, Robinson DL, Vreman HJ, Puffenberger EG, Hart G, Morton DH. Management of hyperbilirubinemia and prevention of kernicterus in 20 patients with Crigler-Najjar disease. Eur J Pediatr. 2006;165(5):306–19.

    Article  PubMed  Google Scholar 

  94. Cornelius CE, Arias IM. Animal model of human disease. Crigler-Najjar syndrome. Animal model: hereditary nonhemolytic unconjugated hyperbilirubinemia in Gunn rats. Am J Pathol. 1972;69(2):369–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Iyanagi T, Emi Y, Ikushiro S. Biochemical and molecular aspects of genetic disorders of bilirubin metabolism. Biochim Biophys Acta. 1998;1407(3):173–84.

    Article  CAS  PubMed  Google Scholar 

  96. Miranda PS, Bosma PJ. Towards liver-directed gene therapy for Crigler-Najjar syndrome. Curr Gene Ther. 2009;9(2):72–82.

    Article  CAS  PubMed  Google Scholar 

  97. Seppen J, Bakker C, de Jong B, Kunne C, van den Oever K, Vandenberghe K, et al. Adeno-associated virus vector serotypes mediate sustained correction of bilirubin UDP glucuronosyltransferase deficiency in rats. Mol Ther. 2006;13(6):1085–92.

    Article  CAS  PubMed  Google Scholar 

  98. Montenegro-Miranda PS, Pichard V, Aubert D, Ten Bloemendaal L, Duijst S, de Waart DR, et al. In the rat liver, adenoviral gene transfer efficiency is comparable to AAV. Gene Ther. 2014;21(2):168–74.

    Article  CAS  PubMed  Google Scholar 

  99. Kren BT, Parashar B, Bandyopadhyay P, Chowdhury NR, Chowdhury JR, Steer CJ. Correction of the UDP-glucuronosyltransferase gene defect in the gunn rat model of Crigler-Najjar syndrome type I with a chimeric oligonucleotide. Proc Natl Acad Sci U S A. 1999;96(18):10349–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Ronzitti G, Bortolussi G, van Dijk R, Collaud F, Charles S, Leborgne C, et al. A translationally optimized AAV-UGT1A1 vector drives safe and long-lasting correction of Crigler-Najjar syndrome. Mol Ther Methods Clin Dev. 2016;3:16049.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Fox IJ, Chowdhury JR, Kaufman SS, Goertzen TC, Chowdhury NR, Warkentin PI, et al. Treatment of the Crigler-Najjar syndrome type I with hepatocyte transplantation. N Engl J Med. 1998;338(20):1422–6.

    Article  CAS  PubMed  Google Scholar 

  102. Sneitz N, Bakker CT, de Knegt RJ, Halley DJ, Finel M, Bosma PJ. Crigler-Najjar syndrome in the Netherlands: identification of four novel UGT1A1 alleles, genotype-phenotype correlation, and functional analysis of 10 missense mutants. Hum Mutat. 2010;31(1):52–9.

    Article  CAS  PubMed  Google Scholar 

  103. Bortolussi G, Baj G, Vodret S, Viviani G, Bittolo T, Muro AF. Age-dependent pattern of cerebellar susceptibility to bilirubin neurotoxicity in vivo. Dis Model Mech. 2014;7(9):1057–68.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Bortolussi G, Zentilin L, Baj G, Giraudi P, Bellarosa C, Giacca M, et al. Rescue of bilirubin-induced neonatal lethality in a mouse model of Crigler-Najjar syndrome type I by AAV9-mediated gene transfer. FASEB J. 2012;26(3):1052–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Bockor L, Bortolussi G, Iaconcig A, Chiaruttini G, Tiribelli C, Giacca M, et al. Repeated AAV-mediated gene transfer by serotype switching enables long-lasting therapeutic levels of hUgt1a1 enzyme in a mouse model of Crigler-Najjar syndrome type I. Gene Ther. 2017;24(10):649–60.

    Article  CAS  PubMed  Google Scholar 

  106. Fontanellas A, Avila MA, Berraondo P. Emerging therapies for acute intermittent porphyria. Expert Rev Mol Med. 2016;18:e17.

    Article  PubMed  CAS  Google Scholar 

  107. Unzu C, Sampedro A, Mauleon I, Gonzalez-Aparicio M, Enriquez de Salamanca R, Prieto J, et al. Helper-dependent adenoviral liver gene therapy protects against induced attacks and corrects protein folding stress in acute intermittent porphyria mice. Hum Mol Genet. 2013;22(14):2929–40.

    Article  CAS  PubMed  Google Scholar 

  108. Paneda A, Lopez-Franco E, Kaeppel C, Unzu C, Gil-Royo AG, D’Avola D, et al. Safety and liver transduction efficacy of rAAV5-cohPBGD in nonhuman primates: a potential therapy for acute intermittent porphyria. Hum Gene Ther. 2013;24(12):1007–17.

    Article  CAS  PubMed  Google Scholar 

  109. Yasuda M, Bishop DF, Fowkes M, Cheng SH, Gan L, Desnick RJ. AAV8-mediated gene therapy prevents induced biochemical attacks of acute intermittent porphyria and improves neuromotor function. Mol Ther. 2010;18(1):17–22.

    Article  CAS  PubMed  Google Scholar 

  110. Unzu C, Sampedro A, Mauleon I, Alegre M, Beattie SG, de Salamanca RE, et al. Sustained enzymatic correction by rAAV-mediated liver gene therapy protects against induced motor neuropathy in acute porphyria mice. Mol Ther. 2011;19(2):243–50.

    Article  CAS  PubMed  Google Scholar 

  111. Soonawalla ZF, Orug T, Badminton MN, Elder GH, Rhodes JM, Bramhall SR, et al. Liver transplantation as a cure for acute intermittent porphyria. Lancet. 2004;363(9410):705–6.

    Article  PubMed  Google Scholar 

  112. Singal AK, Parker C, Bowden C, Thapar M, Liu L, McGuire BM. Liver transplantation in the management of porphyria. Hepatology. 2014;60(3):1082–9.

    Article  PubMed  Google Scholar 

  113. Davidoff AM, Gray JT, Ng CY, Zhang Y, Zhou J, Spence Y, et al. Comparison of the ability of adeno-associated viral vectors pseudotyped with serotype 2, 5, and 8 capsid proteins to mediate efficient transduction of the liver in murine and nonhuman primate models. Mol Ther. 2005;11(6):875–88.

    Article  CAS  PubMed  Google Scholar 

  114. Hodges PE, Rosenberg LE. The spfash mouse: a missense mutation in the ornithine transcarbamylase gene also causes aberrant mRNA splicing. Proc Natl Acad Sci U S A. 1989;86(11):4142–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Kiwaki K, Kanegae Y, Saito I, Komaki S, Nakamura K, Miyazaki JI, et al. Correction of ornithine transcarbamylase deficiency in adult spf(ash) mice and in OTC-deficient human hepatocytes with recombinant adenoviruses bearing the CAG promoter. Hum Gene Ther. 1996;7(7):821–30.

    Article  CAS  PubMed  Google Scholar 

  116. Ye X, Robinson MB, Batshaw ML, Furth EE, Smith I, Wilson JM. Prolonged metabolic correction in adult ornithine transcarbamylase-deficient mice with adenoviral vectors. J Biol Chem. 1996;271(7):3639–46.

    Article  CAS  PubMed  Google Scholar 

  117. Ye X, Robinson MB, Pabin C, Quinn T, Jawad A, Wilson JM, et al. Adenovirus-mediated in vivo gene transfer rapidly protects ornithine transcarbamylase-deficient mice from an ammonium challenge. Pediatr Res. 1997;41(4 Pt 1):527–34.

    Article  CAS  PubMed  Google Scholar 

  118. Batshaw ML, Robinson MB, Ye X, Pabin C, Daikhin Y, Burton BK, et al. Correction of ureagenesis after gene transfer in an animal model and after liver transplantation in humans with ornithine transcarbamylase deficiency. Pediatr Res. 1999;46(5):588–93.

    Article  CAS  PubMed  Google Scholar 

  119. Raper SE, Wilson JM, Yudkoff M, Robinson MB, Ye X, Batshaw ML. Developing adenoviral-mediated in vivo gene therapy for ornithine transcarbamylase deficiency. J Inherit Metab Dis. 1998;21(Suppl 1):119–37.

    Article  CAS  PubMed  Google Scholar 

  120. Zimmer KP, Bendiks M, Mori M, Kominami E, Robinson MB, Ye X, et al. Efficient mitochondrial import of newly synthesized ornithine transcarbamylase (OTC) and correction of secondary metabolic alterations in spf(ash) mice following gene therapy of OTC deficiency. Mol Med. 1999;5(4):244–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Raper SE, Yudkoff M, Chirmule N, Gao GP, Nunes F, Haskal ZJ, et al. A pilot study of in vivo liver-directed gene transfer with an adenoviral vector in partial ornithine transcarbamylase deficiency. Hum Gene Ther. 2002;13(1):163–75.

    Article  CAS  PubMed  Google Scholar 

  122. Moscioni D, Morizono H, McCarter RJ, Stern A, Cabrera-Luque J, Hoang A, et al. Long-term correction of ammonia metabolism and prolonged survival in ornithine transcarbamylase-deficient mice following liver-directed treatment with adeno-associated viral vectors. Mol Ther. 2006;14(1):25–33.

    Article  CAS  PubMed  Google Scholar 

  123. Cunningham SC, Spinoulas A, Carpenter KH, Wilcken B, Kuchel PW, Alexander IE. AAV2/8-mediated correction of OTC deficiency is robust in adult but not neonatal Spf(ash) mice. Mol Ther. 2009;17(8):1340–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Cunningham SC, Kok CY, Dane AP, Carpenter K, Kizana E, Kuchel PW, et al. Induction and prevention of severe hyperammonemia in the spfash mouse model of ornithine transcarbamylase deficiency using shRNA and rAAV-mediated gene delivery. Mol Ther. 2011;19(5):854–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Cunningham SC, Kok CY, Spinoulas A, Carpenter KH, Alexander IE. AAV-encoded OTC activity persisting to adulthood following delivery to newborn spf(ash) mice is insufficient to prevent shRNA-induced hyperammonaemia. Gene Ther. 2013;20(12):1184–7.

    Article  CAS  PubMed  Google Scholar 

  126. Wang L, Wang H, Morizono H, Bell P, Jones D, Lin J, et al. Sustained correction of OTC deficiency in spf (ash) mice using optimized self-complementary AAV2/8 vectors. Gene Ther. 2012;19(4):404–10.

    Article  CAS  PubMed  Google Scholar 

  127. Wang L, Morizono H, Lin J, Bell P, Jones D, McMenamin D, et al. Preclinical evaluation of a clinical candidate AAV8 vector for ornithine transcarbamylase (OTC) deficiency reveals functional enzyme from each persisting vector genome. Mol Genet Metab. 2012;105(2):203–11.

    Article  CAS  PubMed  Google Scholar 

  128. Murillo-Sauca O, Moreno D, Gazquez C, Barberia M, Cenzano I, Solchaga SM, et al. Gene therapy optimization for Wilson’s disease. J Hepatol. 2018;68:S83.

    Article  Google Scholar 

  129. McIntosh J, Lenting PJ, Rosales C, Lee D, Rabbanian S, Raj D, et al. Therapeutic levels of FVIII following a single peripheral vein administration of rAAV vector encoding a novel human factor VIII variant. Blood. 2013;121(17):3335–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Puzzo F, Colella P, Biferi MG, Bali D, Paulk NK, Vidal P, et al. Rescue of Pompe disease in mice by AAV-mediated liver delivery of secretable acid alpha-glucosidase. Sci Transl Med. 2017;9(418).

    Google Scholar 

  131. Ferla R, Claudiani P, Cotugno G, Saccone P, De Leonibus E, Auricchio A. Similar therapeutic efficacy between a single administration of gene therapy and multiple administrations of recombinant enzyme in a mouse model of lysosomal storage disease. Hum Gene Ther. 2014;25(7):609–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Mingozzi F, Liu YL, Dobrzynski E, Kaufhold A, Liu JH, Wang Y, et al. Induction of immune tolerance to coagulation factor IX antigen by in vivo hepatic gene transfer. J Clin Invest. 2003;111(9):1347–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Mingozzi F, Hasbrouck NC, Basner-Tschakarjan E, Edmonson SA, Hui DJ, Sabatino DE, et al. Modulation of tolerance to the transgene product in a nonhuman primate model of AAV-mediated gene transfer to liver. Blood. 2007;110(7):2334–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Dobrzynski E, Mingozzi F, Liu YL, Bendo E, Cao O, Wang L, et al. Induction of antigen-specific CD4+ T-cell anergy and deletion by in vivo viral gene transfer. Blood. 2004;104(4):969–77.

    Article  CAS  PubMed  Google Scholar 

  135. Cao O, Dobrzynski E, Wang L, Nayak S, Mingle B, Terhorst C, et al. Induction and role of regulatory CD4+CD25+ T cells in tolerance to the transgene product following hepatic in vivo gene transfer. Blood. 2007;110(4):1132–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Mingozzi F, Maus MV, Hui DJ, Sabatino DE, Murphy SL, Rasko JE, et al. CD8(+) T-cell responses to adeno-associated virus capsid in humans. Nat Med. 2007;13(4):419–22.

    Article  CAS  PubMed  Google Scholar 

  137. Boutin S, Monteilhet V, Veron P, Leborgne C, Benveniste O, Montus MF, et al. Prevalence of serum IgG and neutralizing factors against adeno-associated virus (AAV) types 1, 2, 5, 6, 8, and 9 in the healthy population: implications for gene therapy using AAV vectors. Hum Gene Ther. 2010;21(6):704–12.

    Article  CAS  PubMed  Google Scholar 

  138. Erles K, Sebokova P, Schlehofer JR. Update on the prevalence of serum antibodies (IgG and IgM) to adeno-associated virus (AAV). J Med Virol. 1999;59(3):406–11.

    Article  CAS  PubMed  Google Scholar 

  139. Veron P, Leborgne C, Monteilhet V, Boutin S, Martin S, Moullier P, et al. Humoral and cellular capsid-specific immune responses to adeno-associated virus type 1 in randomized healthy donors. J Immunol. 2012;188(12):6418–24.

    Article  CAS  PubMed  Google Scholar 

  140. Vandamme C, Adjali O, Mingozzi F. Unraveling the complex story of immune responses to AAV vectors trial after trial. Hum Gene Ther. 2017;28(11):1061–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Finn JD, Hui D, Downey HD, Dunn D, Pien GC, Mingozzi F, et al. Proteasome inhibitors decrease AAV2 capsid derived peptide epitope presentation on MHC class I following transduction. Mol Ther. 2010;18(1):135–42.

    Article  CAS  PubMed  Google Scholar 

  142. Pien GC, Basner-Tschakarjan E, Hui DJ, Mentlik AN, Finn JD, Hasbrouck NC, et al. Capsid antigen presentation flags human hepatocytes for destruction after transduction by adeno-associated viral vectors. J Clin Invest. 2009;119(6):1688–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Jiang H, Couto LB, Patarroyo-White S, Liu T, Nagy D, Vargas JA, et al. Effects of transient immunosuppression on adenoassociated, virus-mediated, liver-directed gene transfer in rhesus macaques and implications for human gene therapy. Blood. 2006;108(10):3321–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Calcedo R, Morizono H, Wang L, McCarter R, He J, Jones D, et al. Adeno-associated virus antibody profiles in newborns, children, and adolescents. Clin Vaccine Immunol. 2011;18(9):1586–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Li C, Narkbunnam N, Samulski RJ, Asokan A, Hu G, Jacobson LJ, et al. Neutralizing antibodies against adeno-associated virus examined prospectively in pediatric patients with hemophilia. Gene Ther. 2012;19(3):288–94.

    Article  CAS  PubMed  Google Scholar 

  146. Calcedo R, Vandenberghe LH, Gao G, Lin J, Wilson JM. Worldwide epidemiology of neutralizing antibodies to adeno-associated viruses. J Infect Dis. 2009;199(3):381–90.

    Article  PubMed  Google Scholar 

  147. Mingozzi F, Chen Y, Edmonson SC, Zhou S, Thurlings RM, Tak PP, et al. Prevalence and pharmacological modulation of humoral immunity to AAV vectors in gene transfer to synovial tissue. Gene Ther. 2013;20(4):417–24.

    Article  CAS  PubMed  Google Scholar 

  148. Mingozzi F, High KA. Overcoming the host immune response to adeno-associated virus gene delivery vectors: the race between clearance, tolerance, neutralization, and escape. Annu Rev Virol. 2017;4(1):511–34.

    Article  CAS  PubMed  Google Scholar 

  149. Russell DW, Hirata RK. Human gene targeting by viral vectors. Nat Genet. 1998;18(4):325–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Sedivy JM, Sharp PA. Positive genetic selection for gene disruption in mammalian cells by homologous recombination. Proc Natl Acad Sci U S A. 1989;86(1):227–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Miller DG, Wang PR, Petek LM, Hirata RK, Sands MS, Russell DW. Gene targeting in vivo by adeno-associated virus vectors. Nat Biotechnol. 2006;24(8):1022–6.

    Article  CAS  PubMed  Google Scholar 

  152. Rouet P, Smih F, Jasin M. Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol Cell Biol. 1994;14(12):8096–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Rouet P, Smih F, Jasin M. Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells. Proc Natl Acad Sci U S A. 1994;91(13):6064–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Smih F, Rouet P, Romanienko PJ, Jasin M. Double-strand breaks at the target locus stimulate gene targeting in embryonic stem cells. Nucleic Acids Res. 1995;23(24):5012–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Ceccaldi R, Rondinelli B, D'Andrea AD. Repair pathway choices and consequences at the double-strand break. Trends Cell Biol. 2016;26(1):52–64.

    Article  CAS  PubMed  Google Scholar 

  156. Shibata A, Jeggo PA. DNA double-strand break repair in a cellular context. Clin Oncol. 2014;26(5):243–9.

    Article  CAS  Google Scholar 

  157. Cox DB, Platt RJ, Zhang F. Therapeutic genome editing: prospects and challenges. Nat Med. 2015;21(2):121–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Carroll D. Genome engineering with targetable nucleases. Annu Rev Biochem. 2014;83:409–39.

    Article  CAS  PubMed  Google Scholar 

  159. Gaj T, Gersbach CA, Barbas CF 3rd. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 2013;31(7):397–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD. Genome editing with engineered zinc finger nucleases. Nat Rev Genet. 2010;11(9):636–46.

    Article  CAS  PubMed  Google Scholar 

  161. Li L, Wu LP, Chandrasegaran S. Functional domains in Fok I restriction endonuclease. Proc Natl Acad Sci U S A. 1992;89(10):4275–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Li T, Huang S, Jiang WZ, Wright D, Spalding MH, Weeks DP, et al. TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain. Nucleic Acids Res. 2011;39(1):359–72.

    Article  PubMed  CAS  Google Scholar 

  163. Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C, et al. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res. 2011;39(12):e82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Deng D, Yan C, Pan X, Mahfouz M, Wang J, Zhu JK, et al. Structural basis for sequence-specific recognition of DNA by TAL effectors. Science. 2012;335(6069):720–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Morbitzer R, Romer P, Boch J, Lahaye T. Regulation of selected genome loci using de novo-engineered transcription activator-like effector (TALE)-type transcription factors. Proc Natl Acad Sci U S A. 2010;107(50):21617–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Mussolino C, Morbitzer R, Lutge F, Dannemann N, Lahaye T, Cathomen T. A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucleic Acids Res. 2011;39(21):9283–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Wiedenheft B, Sternberg SH, Doudna JA. RNA-guided genetic silencing systems in bacteria and archaea. Nature. 2012;482(7385):331–8.

    Article  CAS  PubMed  Google Scholar 

  168. Fineran PC, Charpentier E. Memory of viral infections by CRISPR-Cas adaptive immune systems: acquisition of new information. Virology. 2012;434(2):202–9.

    Article  CAS  PubMed  Google Scholar 

  169. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Kleinstiver BP, Pattanayak V, Prew MS, Tsai SQ, Nguyen NT, Zheng Z, et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature. 2016;529(7587):490–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, Zhang F. Rationally engineered Cas9 nucleases with improved specificity. Science. 2016;351(6268):84–8.

    Article  CAS  PubMed  Google Scholar 

  172. Casini A, Olivieri M, Petris G, Montagna C, Reginato G, Maule G, et al. A highly specific SpCas9 variant is identified by in vivo screening in yeast. Nat Biotechnol. 2018;36:265–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Kim S, Kim D, Cho SW, Kim J, Kim JS. Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res. 2014;24(6):1012–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Liang X, Potter J, Kumar S, Zou Y, Quintanilla R, Sridharan M, et al. Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection. J Biotechnol. 2015;208:44–53.

    Article  CAS  PubMed  Google Scholar 

  175. Ramakrishna S, Kwaku Dad AB, Beloor J, Gopalappa R, Lee SK, Kim H. Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA. Genome Res. 2014;24(6):1020–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Yin H, Song CQ, Dorkin JR, Zhu LJ, Li Y, Wu Q, et al. Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nat Biotechnol. 2016;34(3):328–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Petris G, Casini A, Montagna C, Lorenzin F, Prandi D, Romanel A, et al. Hit and go CAS9 delivered through a lentiviral based self-limiting circuit. Nat Commun. 2017;8:15334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Cohen J, Pertsemlidis A, Kotowski IK, Graham R, Garcia CK, Hobbs HH. Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9. Nat Genet. 2005;37(2):161–5.

    Article  CAS  PubMed  Google Scholar 

  179. Cohen JC, Boerwinkle E, Mosley TH Jr, Hobbs HH. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med. 2006;354(12):1264–72.

    Article  CAS  PubMed  Google Scholar 

  180. Hooper AJ, Marais AD, Tanyanyiwa DM, Burnett JR. The C679X mutation in PCSK9 is present and lowers blood cholesterol in a southern African population. Atherosclerosis. 2007;193(2):445–8.

    Article  CAS  PubMed  Google Scholar 

  181. Zhao Z, Tuakli-Wosornu Y, Lagace TA, Kinch L, Grishin NV, Horton JD, et al. Molecular characterization of loss-of-function mutations in PCSK9 and identification of a compound heterozygote. Am J Hum Genet. 2006;79(3):514–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Denis M, Marcinkiewicz J, Zaid A, Gauthier D, Poirier S, Lazure C, et al. Gene inactivation of proprotein convertase subtilisin/kexin type 9 reduces atherosclerosis in mice. Circulation. 2012;125(7):894–901.

    Article  CAS  PubMed  Google Scholar 

  183. Ding Q, Strong A, Patel KM, Ng SL, Gosis BS, Regan SN, et al. Permanent alteration of PCSK9 with in vivo CRISPR-Cas9 genome editing. Circ Res. 2014;115(5):488–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Wang X, Raghavan A, Chen T, Qiao L, Zhang Y, Ding Q, et al. CRISPR-Cas9 targeting of PCSK9 in human hepatocytes in vivo-brief report. Arterioscler Thromb Vasc Biol. 2016;36(5):783–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Pankowicz FP, Barzi M, Legras X, Hubert L, Mi T, Tomolonis JA, et al. Reprogramming metabolic pathways in vivo with CRISPR/Cas9 genome editing to treat hereditary tyrosinaemia. Nat Commun. 2016;7:12642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Russo P, O’Regan S. Visceral pathology of hereditary tyrosinemia type I. Am J Hum Genet. 1990;47(2):317–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Paulk NK, Wursthorn K, Wang Z, Finegold MJ, Kay MA, Grompe M. Adeno-associated virus gene repair corrects a mouse model of hereditary tyrosinemia in vivo. Hepatology. 2010;51(4):1200–8.

    Article  CAS  PubMed  Google Scholar 

  188. Yin H, Xue W, Chen S, Bogorad RL, Benedetti E, Grompe M, et al. Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat Biotechnol. 2014;32(6):551–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Barzel A, Paulk NK, Shi Y, Huang Y, Chu K, Zhang F, et al. Promoterless gene targeting without nucleases ameliorates haemophilia B in mice. Nature. 2015;517(7534):360–4.

    Article  CAS  PubMed  Google Scholar 

  190. Borel F, Tang Q, Gernoux G, Greer C, Wang Z, Barzel A, et al. Survival advantage of both human hepatocyte xenografts and genome-edited hepatocytes for treatment of alpha-1 antitrypsin deficiency. Mol Ther. 2017;25(11):2477–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Yang Y, Wang L, Bell P, McMenamin D, He Z, White J, et al. A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice. Nat Biotechnol. 2016;34(3):334–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Connelly JP, Barker JC, Pruett-Miller S, Porteus MH. Gene correction by homologous recombination with zinc finger nucleases in primary cells from a mouse model of a generic recessive genetic disease. Mol Ther. 2010;18(6):1103–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. DeKelver RC, Choi VM, Moehle EA, Paschon DE, Hockemeyer D, Meijsing SH, et al. Functional genomics, proteomics, and regulatory DNA analysis in isogenic settings using zinc finger nuclease-driven transgenesis into a safe harbor locus in the human genome. Genome Res. 2010;20(8):1133–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Hockemeyer D, Soldner F, Beard C, Gao Q, Mitalipova M, DeKelver RC, et al. Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nat Biotechnol. 2009;27(9):851–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Kotin RM, Linden RM, Berns KI. Characterization of a preferred site on human chromosome 19q for integration of adeno-associated virus DNA by non-homologous recombination. EMBO J. 1992;11(13):5071–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Li H, Haurigot V, Doyon Y, Li T, Wong SY, Bhagwat AS, et al. In vivo genome editing restores haemostasis in a mouse model of haemophilia. Nature. 2011;475(7355):217–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Anguela XM, Sharma R, Doyon Y, Miller JC, Li H, Haurigot V, et al. Robust ZFN-mediated genome editing in adult hemophilic mice. Blood. 2013;122(19):3283–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Sharma R, Anguela XM, Doyon Y, Wechsler T, DeKelver RC, Sproul S, et al. In vivo genome editing of the albumin locus as a platform for protein replacement therapy. Blood. 2015;126(15):1777–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Chew WL, Tabebordbar M, Cheng JK, Mali P, Wu EY, Ng AH, et al. A multifunctional AAV-CRISPR-Cas9 and its host response. Nat Methods. 2016;13(10):868–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Porro F, Bortolussi G, Barzel A, De Caneva A, Iaconcig A, Vodret S, et al. Promoterless gene targeting without nucleases rescues lethality of a Crigler-Najjar syndrome mouse model. EMBO Mol Med. 2017;9(10):1346–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Nygaard S, Barzel A, Haft A, Major A, Finegold M, Kay MA, et al. A universal system to select gene-modified hepatocytes in vivo. Sci Transl Med. 2016;8(342):342ra79.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  202. Adam R, Karam V, Delvart V, O’Grady J, Mirza D, Klempnauer J, et al. Evolution of indications and results of liver transplantation in Europe. A report from the European Liver Transplant Registry (ELTR). J Hepatol. 2012;57(3):675–88.

    Article  PubMed  Google Scholar 

  203. Lindberg RL, Porcher C, Grandchamp B, Ledermann B, Burki K, Brandner S, et al. Porphobilinogen deaminase deficiency in mice causes a neuropathy resembling that of human hepatic porphyria. Nat Genet. 1996;12(2):195–9.

    Article  CAS  PubMed  Google Scholar 

  204. Unzu C, Sampedro A, Mauleon I, Vanrell L, Dubrot J, de Salamanca RE, et al. Porphobilinogen deaminase over-expression in hepatocytes, but not in erythrocytes, prevents accumulation of toxic porphyrin precursors in a mouse model of acute intermittent porphyria. J Hepatol. 2010;52(3):417–24.

    Article  CAS  PubMed  Google Scholar 

  205. Carlson JA, Rogers BB, Sifers RN, Finegold MJ, Clift SM, DeMayo FJ, et al. Accumulation of PiZ alpha 1-antitrypsin causes liver damage in transgenic mice. J Clin Invest. 1989;83(4):1183–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Cruz PE, Mueller C, Cossette TL, Golant A, Tang Q, Beattie SG, et al. In vivo post-transcriptional gene silencing of alpha-1 antitrypsin by adeno-associated virus vectors expressing siRNA. Lab Invest. 2007;87(9):893–902.

    Article  CAS  PubMed  Google Scholar 

  207. Chiuchiolo MJ, Crystal RG. Gene therapy for Alpha-1 antitrypsin deficiency lung disease. Ann Am Thorac Soc. 2016;13(Suppl 4):S352–69.

    Article  PubMed  PubMed Central  Google Scholar 

  208. Conlon TJ, Cossette T, Erger K, Choi YK, Clarke T, Scott-Jorgensen M, et al. Efficient hepatic delivery and expression from a recombinant adeno-associated virus 8 pseudotyped alpha1-antitrypsin vector. Mol Ther. 2005;12(5):867–75.

    Article  CAS  PubMed  Google Scholar 

  209. Morral N, Parks RJ, Zhou H, Langston C, Schiedner G, Quinones J, et al. High doses of a helper-dependent adenoviral vector yield supraphysiological levels of alpha1-antitrypsin with negligible toxicity. Hum Gene Ther. 1998;9(18):2709–16.

    Article  CAS  PubMed  Google Scholar 

  210. Schiedner G, Morral N, Parks RJ, Wu Y, Koopmans SC, Langston C, et al. Genomic DNA transfer with a high-capacity adenovirus vector results in improved in vivo gene expression and decreased toxicity. Nat Genet. 1998;18(2):180–3.

    Article  CAS  PubMed  Google Scholar 

  211. Patejunas G, Bradley A, Beaudet AL, O’Brien WE. Generation of a mouse model for citrullinemia by targeted disruption of the argininosuccinate synthetase gene. Somat Cell Mol Genet. 1994;20(1):55–60.

    Article  CAS  PubMed  Google Scholar 

  212. Perez CJ, Jaubert J, Guenet JL, Barnhart KF, Ross-Inta CM, Quintanilla VC, et al. Two hypomorphic alleles of mouse Ass1 as a new animal model of citrullinemia type I and other hyperammonemic syndromes. Am J Pathol. 2010;177(4):1958–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Chandler RJ, Tarasenko TN, Cusmano-Ozog K, Sun Q, Sutton VR, Venditti CP, et al. Liver-directed adeno-associated virus serotype 8 gene transfer rescues a lethal murine model of citrullinemia type 1. Gene Ther. 2013;20(12):1188–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Kok CY, Cunningham SC, Carpenter KH, Dane AP, Siew SM, Logan GJ, et al. Adeno-associated virus-mediated rescue of neonatal lethality in argininosuccinate synthetase-deficient mice. Mol Ther. 2013;21(10):1823–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Ye X, Whiteman B, Jerebtsova M, Batshaw ML. Correction of argininosuccinate synthetase (AS) deficiency in a murine model of citrullinemia with recombinant adenovirus carrying human AS cDNA. Gene Ther. 2000;7(20):1777–82.

    Article  CAS  PubMed  Google Scholar 

  216. Gunn CH. Hereditary acholuric jaundice in a new mutant strain of rats. J Hered. 1934;29:137–9.

    Article  Google Scholar 

  217. Toietta G, Mane VP, Norona WS, Finegold MJ, Ng P, McDonagh AF, et al. Lifelong elimination of hyperbilirubinemia in the Gunn rat with a single injection of helper-dependent adenoviral vector. Proc Natl Acad Sci U S A. 2005;102(11):3930–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Seppen J, van der Rijt R, Looije N, van Til NP, Lamers WH, Oude Elferink RP. Long-term correction of bilirubin UDPglucuronyltransferase deficiency in rats by in utero lentiviral gene transfer. Mol Ther. 2003;8(4):593–9.

    Article  CAS  PubMed  Google Scholar 

  219. Seppen J, van Til NP, van der Rijt R, Hiralall JK, Kunne C, Elferink RP. Immune response to lentiviral bilirubin UDP-glucuronosyltransferase gene transfer in fetal and neonatal rats. Gene Ther. 2006;13(8):672–7.

    Article  CAS  PubMed  Google Scholar 

  220. Pastore N, Nusco E, Piccolo P, Castaldo S, Vanikova J, Vetrini F, et al. Improved efficacy and reduced toxicity by ultrasound-guided intrahepatic injections of helper-dependent adenoviral vector in Gunn rats. Hum Gene Ther Methods. 2013;24(5):321–7.

    Article  CAS  PubMed  Google Scholar 

  221. Flageul M, Aubert D, Pichard V, Nguyen TH, Nowrouzi A, Schmidt M, et al. Transient expression of genes delivered to newborn rat liver using recombinant adeno-associated virus 2/8 vectors. J Gene Med. 2009;11(8):689–96.

    Article  CAS  PubMed  Google Scholar 

  222. Montenegro-Miranda PS, Paneda A, ten Bloemendaal L, Duijst S, de Waart DR, Aseguinolaza GG, et al. Adeno-associated viral vector serotype 5 poorly transduces liver in rat models. PLoS One. 2013;8(12):e82597.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  223. Nguyen TH, Bellodi-Privato M, Aubert D, Pichard V, Myara A, Trono D, et al. Therapeutic lentivirus-mediated neonatal in vivo gene therapy in hyperbilirubinemic Gunn rats. Mol Ther. 2005;12(5):852–9.

    Article  CAS  PubMed  Google Scholar 

  224. Schmitt F, Remy S, Dariel A, Flageul M, Pichard V, Boni S, et al. Lentiviral vectors that express UGT1A1 in liver and contain miR-142 target sequences normalize hyperbilirubinemia in Gunn rats. Gastroenterology. 2010;139(3):999–1007, 07 e1–2.

    Article  CAS  Google Scholar 

  225. Nguyen TH, Aubert D, Bellodi-Privato M, Flageul M, Pichard V, Jaidane-Abdelghani Z, et al. Critical assessment of lifelong phenotype correction in hyperbilirubinemic Gunn rats after retroviral mediated gene transfer. Gene Ther. 2007;14(17):1270–7.

    Article  CAS  PubMed  Google Scholar 

  226. Wang X, Sarkar DP, Mani P, Steer CJ, Chen Y, Guha C, et al. Long-term reduction of jaundice in Gunn rats by nonviral liver-targeted delivery of sleeping beauty transposon. Hepatology. 2009;50(3):815–24.

    Article  CAS  PubMed  Google Scholar 

  227. Nguyen N, Bonzo JA, Chen S, Chouinard S, Kelner MJ, Hardiman G, et al. Disruption of the ugt1 locus in mice resembles human Crigler-Najjar type I disease. J Biol Chem. 2008;283(12):7901–11.

    Article  CAS  PubMed  Google Scholar 

  228. Greig JA, Nordin JML, Draper C, Bell P, Wilson JM. AAV8 gene therapy rescues the newborn phenotype of a mouse model of Crigler-Najjar. Hum Gene Ther. 2018;29(7):763–70.

    Article  CAS  PubMed  Google Scholar 

  229. Ishibashi S, Brown MS, Goldstein JL, Gerard RD, Hammer RE, Herz J. Hypercholesterolemia in low density lipoprotein receptor knockout mice and its reversal by adenovirus-mediated gene delivery. J Clin Invest. 1993;92(2):883–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Powell-Braxton L, Veniant M, Latvala RD, Hirano KI, Won WB, Ross J, et al. A mouse model of human familial hypercholesterolemia: markedly elevated low density lipoprotein cholesterol levels and severe atherosclerosis on a low-fat chow diet. Nat Med. 1998;4(8):934–8.

    Article  CAS  PubMed  Google Scholar 

  231. Lebherz C, Gao G, Louboutin JP, Millar J, Rader D, Wilson JM. Gene therapy with novel adeno-associated virus vectors substantially diminishes atherosclerosis in a murine model of familial hypercholesterolemia. J Gene Med. 2004;6(6):663–72.

    Article  CAS  PubMed  Google Scholar 

  232. Lebherz C, Sanmiguel J, Wilson JM, Rader DJ. Gene transfer of wild-type apoA-I and apoA-I Milano reduce atherosclerosis to a similar extent. Cardiovasc Diabetol. 2007;6:15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  233. Chen SJ, Sanmiguel J, Lock M, McMenamin D, Draper C, Limberis MP, et al. Biodistribution of AAV8 vectors expressing human low-density lipoprotein receptor in a mouse model of homozygous familial hypercholesterolemia.Human gene therapy. Clin Dev. 2013;24(4):154–60.

    CAS  Google Scholar 

  234. Chen SJ, Rader DJ, Tazelaar J, Kawashiri M, Gao G, Wilson JM. Prolonged correction of hyperlipidemia in mice with familial hypercholesterolemia using an adeno-associated viral vector expressing very-low-density lipoprotein receptor. Mol Ther. 2000;2(3):256–61.

    Article  CAS  PubMed  Google Scholar 

  235. Kassim SH, Li H, Bell P, Somanathan S, Lagor W, Jacobs F, et al. Adeno-associated virus serotype 8 gene therapy leads to significant lowering of plasma cholesterol levels in humanized mouse models of homozygous and heterozygous familial hypercholesterolemia. Hum Gene Ther. 2013;24(1):19–26.

    Article  CAS  PubMed  Google Scholar 

  236. Kassim SH, Li H, Vandenberghe LH, Hinderer C, Bell P, Marchadier D, et al. Gene therapy in a humanized mouse model of familial hypercholesterolemia leads to marked regression of atherosclerosis. PLoS One. 2010;5(10):e13424.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  237. Somanathan S, Jacobs F, Wang Q, Hanlon AL, Wilson JM, Rader DJ. AAV vectors expressing LDLR gain-of-function variants demonstrate increased efficacy in mouse models of familial hypercholesterolemia. Circ Res. 2014;115(6):591–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Bi L, Lawler AM, Antonarakis SE, High KA, Gearhart JD, Kazazian HH Jr. Targeted disruption of the mouse factor VIII gene produces a model of haemophilia A. Nat Genet. 1995;10(1):119–21.

    Article  CAS  PubMed  Google Scholar 

  239. Chavez CL, Keravala A, Chu JN, Farruggio AP, Cuellar VE, Voorberg J, et al. Long-term expression of human coagulation factor VIII in a tolerant mouse model using the phiC31 integrase system. Hum Gene Ther. 2012;23(4):390–8.

    Article  CAS  PubMed  Google Scholar 

  240. Merlin S, Cannizzo ES, Borroni E, Bruscaggin V, Schinco P, Tulalamba W, et al. A novel platform for immune tolerance induction in hemophilia A mice. Mol Ther. 2017;25(8):1815–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Monahan PE, Lothrop CD, Sun J, Hirsch ML, Kafri T, Kantor B, et al. Proteasome inhibitors enhance gene delivery by AAV virus vectors expressing large genomes in hemophilia mouse and dog models: a strategy for broad clinical application. Mol Ther. 2010;18(11):1907–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Lozier JN, Dutra A, Pak E, Zhou N, Zheng Z, Nichols TC, et al. The Chapel Hill hemophilia A dog colony exhibits a factor VIII gene inversion. Proc Natl Acad Sci U S A. 2002;99(20):12991–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Evans JP, Brinkhous KM, Brayer GD, Reisner HM, High KA. Canine hemophilia B resulting from a point mutation with unusual consequences. Proc Natl Acad Sci U S A. 1989;86(24):10095–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Mauser AE, Whitlark J, Whitney KM, Lothrop CD Jr. A deletion mutation causes hemophilia B in Lhasa Apso dogs. Blood. 1996;88(9):3451–5.

    CAS  PubMed  Google Scholar 

  245. Wang L, Zoppe M, Hackeng TM, Griffin JH, Lee KF, Verma IM. A factor IX-deficient mouse model for hemophilia B gene therapy. Proc Natl Acad Sci U S A. 1997;94(21):11563–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Mingozzi F, Schuttrumpf J, Arruda VR, Liu Y, Liu YL, High KA, et al. Improved hepatic gene transfer by using an adeno-associated virus serotype 5 vector. J Virol. 2002;76(20):10497–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Arruda VR, Schuettrumpf J, Herzog RW, Nichols TC, Robinson N, Lotfi Y, et al. Safety and efficacy of factor IX gene transfer to skeletal muscle in murine and canine hemophilia B models by adeno-associated viral vector serotype 1. Blood. 2004;103(1):85–92.

    Article  CAS  PubMed  Google Scholar 

  248. Nichols TC, Whitford MH, Arruda VR, Stedman HH, Kay MA, High KA. Translational data from adeno-associated virus-mediated gene therapy of hemophilia B in dogs. Hum Gene Ther Clin Dev. 2015;26(1):5–14.

    Article  CAS  PubMed  Google Scholar 

  249. Wendel U, Saudubray JM, Bodner A, Schadewaldt P. Liver transplantation in maple syrup urine disease. Eur J Pediatr. 1999;158(Suppl 2):S60–4.

    Article  PubMed  Google Scholar 

  250. Homanics GE, Skvorak K, Ferguson C, Watkins S, Paul HS. Production and characterization of murine models of classic and intermediate maple syrup urine disease. BMC Med Genet. 2006;7:33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  251. Johnson MT, Yang HS, Magnuson T, Patel MS. Targeted disruption of the murine dihydrolipoamide dehydrogenase gene (Dld) results in perigastrulation lethality. Proc Natl Acad Sci U S A. 1997;94(26):14512–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Chandler RJ, Sloan J, Fu H, Tsai M, Stabler S, Allen R, et al. Metabolic phenotype of methylmalonic acidemia in mice and humans: the role of skeletal muscle. BMC Med Genet. 2007;8:64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  253. Chandler RJ, Venditti CP. Pre-clinical efficacy and dosing of an AAV8 vector expressing human methylmalonyl-CoA mutase in a murine model of methylmalonic acidemia (MMA). Mol Genet Metab. 2012;107(3):617–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Carrillo-Carrasco N, Chandler RJ, Chandrasekaran S, Venditti CP. Liver-directed recombinant adeno-associated viral gene delivery rescues a lethal mouse model of methylmalonic acidemia and provides long-term phenotypic correction. Hum Gene Ther. 2010;21(9):1147–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  255. Chandler RJ, Venditti CP. Long-term rescue of a lethal murine model of methylmalonic acidemia using adeno-associated viral gene therapy. Mol Ther. 2010;18(1):11–6.

    Article  CAS  PubMed  Google Scholar 

  256. Chandler RJ, Venditti CP. Adenovirus-mediated gene delivery rescues a neonatal lethal murine model of mut(0) methylmalonic acidemia. Hum Gene Ther. 2008;19(1):53–60.

    Article  CAS  PubMed  Google Scholar 

  257. Senac JS, Chandler RJ, Sysol JR, Li L, Venditti CP. Gene therapy in a murine model of methylmalonic acidemia using rAAV9-mediated gene delivery. Gene Ther. 2012;19(4):385–91.

    Article  CAS  PubMed  Google Scholar 

  258. Wong ES, McIntyre C, Peters HL, Ranieri E, Anson DS, Fletcher JM. Correction of methylmalonic aciduria in vivo using a codon-optimized lentiviral vector. Hum Gene Ther. 2014;25(6):529–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Hulbert LL, Doolittle DP. Abnormal skin and hair: a sex-linked mutation in the house mouse. Genetics. 1971;68:s29.

    Google Scholar 

  260. Cupp MB. Sparse-fur, sf. Mouse News Lett. 1958;19:37

    Google Scholar 

  261. Wang L, Bell P, Morizono H, He Z, Pumbo E, Yu H, et al. AAV gene therapy corrects OTC deficiency and prevents liver fibrosis in aged OTC-knock out heterozygous mice. Mol Genet Metab. 2017;120(4):299–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Bell P, Wang L, Chen SJ, Yu H, Zhu Y, Nayal M, et al. Effects of self-complementarity, codon optimization, transgene, and dose on liver transduction with AAV8. Hum Gene Ther Methods. 2016;27(6):228–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Brunetti-Pierri N, Clarke C, Mane V, Palmer DJ, Lanpher B, Sun Q, et al. Phenotypic correction of ornithine transcarbamylase deficiency using low dose helper-dependent adenoviral vectors. J Gene Med. 2008;10(8):890–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Mian A, McCormack WM Jr, Mane V, Kleppe S, Ng P, Finegold M, et al. Long-term correction of ornithine transcarbamylase deficiency by WPRE-mediated overexpression using a helper-dependent adenovirus. Mol Ther. 2004;10(3):492–9.

    Article  CAS  PubMed  Google Scholar 

  265. Paulusma CC, Groen A, Kunne C, Ho-Mok KS, Spijkerboer AL, Rudi de Waart D, et al. Atp8b1 deficiency in mice reduces resistance of the canalicular membrane to hydrophobic bile salts and impairs bile salt transport. Hepatology. 2006;44(1):195–204.

    Article  CAS  PubMed  Google Scholar 

  266. Wang R, Salem M, Yousef IM, Tuchweber B, Lam P, Childs SJ, et al. Targeted inactivation of sister of P-glycoprotein gene (spgp) in mice results in nonprogressive but persistent intrahepatic cholestasis. Proc Natl Acad Sci U S A. 2001;98(4):2011–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Guenzel AJ, Hofherr SE, Hillestad M, Barry M, Weaver E, Venezia S, et al. Generation of a hypomorphic model of propionic acidemia amenable to gene therapy testing. Mol Ther. 2013;21(7):1316–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Miyazaki T, Ohura T, Kobayashi M, Shigematsu Y, Yamaguchi S, Suzuki Y, et al. Fatal propionic acidemia in mice lacking propionyl-CoA carboxylase and its rescue by postnatal, liver-specific supplementation via a transgene. J Biol Chem. 2001;276(38):35995–9.

    Article  CAS  PubMed  Google Scholar 

  269. Hofherr SE, Senac JS, Chen CY, Palmer DJ, Ng P, Barry MA. Short-term rescue of neonatal lethality in a mouse model of propionic acidemia by gene therapy. Hum Gene Ther. 2009;20(2):169–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Chandler RJ, Chandrasekaran S, Carrillo-Carrasco N, Senac JS, Hofherr SE, Barry MA, et al. Adeno-associated virus serotype 8 gene transfer rescues a neonatal lethal murine model of propionic acidemia. Hum Gene Ther. 2011;22(4):477–81.

    Article  CAS  PubMed  Google Scholar 

  271. Culiat CT, Klebig ML, Liu Z, Monroe H, Stanford B, Desai J, et al. Identification of mutations from phenotype-driven ENU mutagenesis in mouse chromosome 7. Mamm Genome. 2005;16(8):555–66.

    Article  CAS  PubMed  Google Scholar 

  272. Aponte JL, Sega GA, Hauser LJ, Dhar MS, Withrow CM, Carpenter DA, et al. Point mutations in the murine fumarylacetoacetate hydrolase gene: animal models for the human genetic disorder hereditary tyrosinemia type 1. Proc Natl Acad Sci U S A. 2001;98(2):641–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  273. Grompe M. Fah knockout animals as models for therapeutic liver repopulation. Adv Exp Med Biol. 2017;959:215–30.

    Article  CAS  PubMed  Google Scholar 

  274. Hickey RD, Lillegard JB, Fisher JE, McKenzie TJ, Hofherr SE, Finegold MJ, et al. Efficient production of Fah-null heterozygote pigs by chimeric adeno-associated virus-mediated gene knockout and somatic cell nuclear transfer. Hepatology. 2011;54(4):1351–9.

    Article  CAS  PubMed  Google Scholar 

  275. Held PK, Olivares EC, Aguilar CP, Finegold M, Calos MP, Grompe M. In vivo correction of murine hereditary tyrosinemia type I by phiC31 integrase-mediated gene delivery. Mol Ther. 2005;11(3):399–408.

    Article  CAS  PubMed  Google Scholar 

  276. Overturf K, Al-Dhalimy M, Ou CN, Finegold M, Tanguay R, Lieber A, et al. Adenovirus-mediated gene therapy in a mouse model of hereditary tyrosinemia type I. Hum Gene Ther. 1997;8(5):513–21.

    Article  CAS  PubMed  Google Scholar 

  277. Montini E, Held PK, Noll M, Morcinek N, Al-Dhalimy M, Finegold M, et al. In vivo correction of murine tyrosinemia type I by DNA-mediated transposition. Mol Ther. 2002;6(6):759–69.

    Article  CAS  PubMed  Google Scholar 

  278. Paulk NK, Pekrun K, Zhu E, Nygaard S, Li B, Xu J, et al. Bioengineered AAV capsids with combined high human liver transduction in vivo and unique humoral Seroreactivity. Mol Ther. 2018;26(1):289–303.

    Article  CAS  PubMed  Google Scholar 

  279. Hickey RD, Mao SA, Glorioso J, Elgilani F, Amiot B, Chen H, et al. Curative ex vivo liver-directed gene therapy in a pig model of hereditary tyrosinemia type 1. Sci Transl Med. 2016;8(349):349ra99.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  280. Schilsky ML, Stockert RJ, Sternlieb I. Pleiotropic effect of LEC mutation: a rodent model of Wilson’s disease. Am J Phys. 1994;266(5 Pt 1):G907–13.

    CAS  Google Scholar 

  281. Wu J, Forbes JR, Chen HS, Cox DW. The LEC rat has a deletion in the copper transporting ATPase gene homologous to the Wilson disease gene. Nat Genet. 1994;7(4):541–5.

    Article  CAS  PubMed  Google Scholar 

  282. Buiakova OI, Xu J, Lutsenko S, Zeitlin S, Das K, Das S, et al. Null mutation of the murine ATP7B (Wilson disease) gene results in intracellular copper accumulation and late-onset hepatic nodular transformation. Hum Mol Genet. 1999;8(9):1665–71.

    Article  CAS  PubMed  Google Scholar 

  283. Theophilos MB, Cox DW, Mercer JF. The toxic milk mouse is a murine model of Wilson disease. Hum Mol Genet. 1996;5(10):1619–24.

    Article  CAS  PubMed  Google Scholar 

  284. Merle U, Encke J, Tuma S, Volkmann M, Naldini L, Stremmel W. Lentiviral gene transfer ameliorates disease progression in Long-Evans cinnamon rats: an animal model for Wilson disease. Scand J Gastroenterol. 2006;41(8):974–82.

    Article  CAS  PubMed  Google Scholar 

  285. Murillo O, Luqui DM, Gazquez C, Martinez-Espartosa D, Navarro-Blasco I, Monreal JI, et al. Long-term metabolic correction of Wilson’s disease in a murine model by gene therapy. J Hepatol. 2016;64(2):419–26.

    Article  CAS  PubMed  Google Scholar 

  286. Du H, Duanmu M, Witte D, Grabowski GA. Targeted disruption of the mouse lysosomal acid lipase gene: long-term survival with massive cholesteryl ester and triglyceride storage. Hum Mol Genet. 1998;7(9):1347–54.

    Article  CAS  PubMed  Google Scholar 

  287. Du H, Heur M, Witte DP, Ameis D, Grabowski GA. Lysosomal acid lipase deficiency: correction of lipid storage by adenovirus-mediated gene transfer in mice. Hum Gene Ther. 2002;13(11):1361–72.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andrès F. Muro or Federico Mingozzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Muro, A.F., D’Antiga, L., Mingozzi, F. (2019). Gene Therapy in Pediatric Liver Disease. In: D'Antiga, L. (eds) Pediatric Hepatology and Liver Transplantation. Springer, Cham. https://doi.org/10.1007/978-3-319-96400-3_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96400-3_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96399-0

  • Online ISBN: 978-3-319-96400-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics