Skip to main content

Ecosystem Services from Inland Waters and Their Aquatic Ecosystems

  • Chapter
  • First Online:
Atlas of Ecosystem Services

Abstract

Inland surface waters (i.e., lakes, reservoirs, running waters, and wetlands) are highly valued ecosystems [1] and are greatly relevant to global biodiversity [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Costanza R, d’Arge R, de Groot R, Farber S, Grasso M, Hannon B, et al. The value of the world’s ecosystem services and natural capital. Nature. 1997;387:253–60.

    Article  CAS  Google Scholar 

  2. Dudgeon D, Arthington AH, Gessner MO, Kawabata ZI, Knowler DJ, Leveque C, et al. Freshwater biodiversity: importance, threats, status and conservation challenges. Biol Rev. 2006;81:163–82.

    Article  Google Scholar 

  3. Vörösmarty CJ, Lévêque C, Revenga C, Bos R, Caudill C, Chilton J, et al. Fresh water. In: Hassan R, Scholes R, Ash N, editors. Ecosystems and human well-being: current state and trends. Millennium ecosystem assessment, V. 1. Washington, DC: Island Press; 2005. http://www.millenniumassessment.org/documents/document.276.aspx.pdf. Accessed 19 Oct 2017.

    Google Scholar 

  4. Millennium Ecosystem Assessment. Ecosystems and human well-being: wetlands and water synthesis. Washington, DC: World Resources Institute; 2005. http://www.millenniumassessment.org/documents/document.358.aspx.pdf. Accessed 19 Oct 2017

    Google Scholar 

  5. Lehner B, Döll P. Development and validation of a global database of lakes, reservoirs and wetlands. J Hydrol. 2004;296:1–22.

    Article  Google Scholar 

  6. Pekel J-F, Cottam A, Gorelick N, Belward AS. High-resolution mapping of global surface water and its long-term changes. Nature. 2016;540:418–22.

    Article  CAS  Google Scholar 

  7. Zarfl C, Lumsdon AE, Berlekamp J, Tydecks L, Tockner K. A global boom in hydropower dam construction. Aquat Sci. 2014;77:161–70.

    Article  Google Scholar 

  8. Balian EV, Segers H, Lévèque C, Martens K. The freshwater animal diversity assessment: an overview of the results. Hydrobiologia. 2008;595:627–37.

    Article  Google Scholar 

  9. Berendonk TU, Manaia CM, Merlin C, Fatta-Kassinos D, Cytryn E, Walsh F, et al. Tackling antibiotic resistance: the environmental framework. Nat Rev Microbiol. 2015;13:310–7.

    Article  CAS  Google Scholar 

  10. Caraco NF, Cole JJ, Strayer DL. Top down control from the bottom: regulation of eutrophication in a large river by benthic grazing. Limnol Oceanogr. 2006;51:664–70.

    Article  Google Scholar 

  11. Pimentel D, Zuniga R, Morrison D. Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol Econ. 2005;52:273–88.

    Article  Google Scholar 

  12. Cabral JPS. Water microbiology: bacterial pathogens and water. Int J Environ Res Public Health. 2010;7:3657–703.

    Article  Google Scholar 

  13. WHO. Guidelines for drinking-water quality. Geneva, Switzerland: WHO; 2008.

    Google Scholar 

  14. Hering D, Borja A, Carstensen J, Carvalho L, Elliott M, Feld CK, et al. The European Water Framework Directive at the age of 10: a critical review of the achievements with recommendations for the future. Sci Total Environ. 2010;408:4007–19.

    Article  CAS  Google Scholar 

  15. Martin-Ortega J. Economic prescriptions and policy applications in the implementation of the European Water Framework Directive. Environ Sci Pol. 2012;24:83–91.

    Article  Google Scholar 

  16. Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, et al. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science. 2008;320:889–92.

    Article  CAS  Google Scholar 

  17. Kunz JV, Hensley R, Brase L, Borchardt D, Rode M. High frequency measurements of reach scale nitrogen uptake in a fourth order river with contrasting hydromorphology and variable water chemistry (Weiße Elster, Germany). Water Resour Res. 2017;53:328–43.

    Article  Google Scholar 

  18. Roley SS, Tank JL, Williams MA. Hydrologic connectivity increases denitrification in the hyporheic zone and restored floodplains of an agricultural stream. J Geophys Res. 2012;117:G00N04.

    Article  Google Scholar 

  19. Kong X, He Q, Yang B, He W, Xu F, Janssen ABG, et al. Hydrological regulation drives regime shifts: evidence from paleolimnology and ecosystem modeling of a large shallow Chinese lake. Glob Chang Biol. 2017;23:737–54.

    Article  Google Scholar 

  20. Wessel P, Smith WHF. A Global self-consistent, hierarchical, high-resolution shoreline database. J Geophys Res. 1996;101:8741–3.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karsten Rinke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rinke, K., Keller, P.S., Kong, X., Borchardt, D., Weitere, M. (2019). Ecosystem Services from Inland Waters and Their Aquatic Ecosystems. In: Schröter, M., Bonn, A., Klotz, S., Seppelt, R., Baessler, C. (eds) Atlas of Ecosystem Services. Springer, Cham. https://doi.org/10.1007/978-3-319-96229-0_30

Download citation

Publish with us

Policies and ethics