Skip to main content

Capacity of Ecosystems to Degrade Anthropogenic Chemicals

  • Chapter
  • First Online:
Book cover Atlas of Ecosystem Services

Abstract

Pollution of ecosystems by a constantly increasing load of anthropogenic chemicals is a major driver of ecosystem service risk. This chapter summarizes relevant abiotic and biotic processes that determine the persistence, degradation, and ultimate destination of anthropogenic chemicals. It also summarizes research challenges for predicting the ability of an ecosystem to biodegrade an anthropogenic chemical by addressing the following questions: “What makes a chemical available for biodegradation?” and “What makes an ecosystem capable of biodegradation?”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rockstrom J, Steffen W, Noone K, Persson A, Chapin FS, Lambin EF, et al. A safe operating space for humanity. Nature. 2009;461(7263):472–5.

    Article  Google Scholar 

  2. Swedish Environmental Protection Agency. A non-toxic environment. http://www.swedishepa.se/Environmental-objectives-and-cooperation/Swedens-environmental-objectives/The-national-environmental-objectives/A-Non-Toxic-Environment/. Accessed 19 Oct 2017.

  3. Carvalhais N, Forkel M, Khomik M, Bellarby J, Jung M, Migliavacca M, et al. Global covariation of carbon turnover times with climate in terrestrial ecosystems. Nature. 2014;514(7521):213–7.

    Article  CAS  Google Scholar 

  4. Reemtsma T, Berger U, Arp HH, Gallard H, Knepper TP, Neumann M, et al. Mind the gap: persistent and mobile organic compounds—water contaminants that slip through. Environ Sci Technol. 2016;50:10308–15.

    Article  CAS  Google Scholar 

  5. Kolvenbach BA, Helbling DE, Kohler HPE, Corvini PFX. Emerging chemicals and the evolution of biodegradation capacities and pathways in bacteria. Curr Opin Biotechnol. 2014;27:8–14.

    Article  CAS  Google Scholar 

  6. Ortega-Calvo JJ, Harmsen J, Parsons JR, Semple KT, Aitken MD, Ajao C, et al. From bioavailability science to regulation of organic chemicals. Environ Sci Technol. 2015;49(17):10255–64.

    Article  CAS  Google Scholar 

  7. Bosma TNP, Middeldorp PJM, Schraa G, Zehnder AJB. Mass transfer limitation of biotransformation: quantifying bioavailability. Environ Sci Technol. 1996;31(1):248–52.

    Article  Google Scholar 

  8. de Lorenzo V. Systems biology approaches to bioremediation. Curr Opin Biotechnol. 2008;19(6):579–89.

    Article  Google Scholar 

  9. Fester T, Giebler J, Wick LY, Schlosser D, Kastner M. Plant-microbe interactions as drivers of ecosystem functions relevant for the biodegradation of organic contaminants. Curr Opin Biotechnol. 2014;27:168–75.

    Article  CAS  Google Scholar 

  10. Harms H, Schlosser D, Wick LY. Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nat Rev Microbiol. 2011;9(3):177–92.

    Article  CAS  Google Scholar 

  11. Hernandez‐Raquet G, Durand E, Braun F, Cravo‐Laureau C, Godon JJ. Impact of microbial diversity depletion on xenobiotic degradation by sewage‐activated sludge. Environ Microbiol Rep. 2013;5(4):588–94.

    Article  Google Scholar 

  12. Kassen R, Rainey PB. The ecology and genetics of microbial diversity. Annu Rev Microbiol. 2004;58:207–31.

    Article  CAS  Google Scholar 

  13. Zhou JZ, Xia BC, Treves DS, Wu LY, Marsh TL, O’Neill RV, et al. Spatial and resource factors influencing high microbial diversity in soil. Appl Environ Microbiol. 2002;68(1):326–34.

    Article  CAS  Google Scholar 

  14. Fetzer I, Johst K, Schawe R, Banitz T, Harms H, Chatzinotas A. The extent of functional redundancy changes as species’ roles shift in different environments. Proc Natl Acad Sci U S A. 2015;112(48):14888–93.

    Article  CAS  Google Scholar 

  15. Crowther TW, Thomas SM, Maynard DS, Baldrian P, Covey K, Frey SD, van LTA D, Bradford MA. Biotic interactions mediate soil microbial feedbacks to climate change. Proc Natl Acad Sci U S A. 2015;112(22):7033–8.

    Article  CAS  Google Scholar 

  16. Classen AT, Sundqvist MK, Henning JA, Newman GS, Moore JA, Cregger MA, et al. Direct and indirect effects of climate change on soil microbial and soil microbial‐plant interactions: what lies ahead? Ecosphere. 2015;6(8):1–21.

    Article  Google Scholar 

  17. Singh BK, Quince C, Macdonald CA, Khachane A, Thomas N, Abu Al-Soud W, et al. Loss of microbial diversity in soils is coincident with reductions in some specialized functions. Environ Microbiol. 2014;16(8):2408–20.

    Article  Google Scholar 

  18. Tobor-Kapłon MA, Bloem J, Römkens P, De Ruiter PC. Functional stability of microbial communities in contaminated soils near a zinc smelter (Budel, The Netherlands). Ecotoxicology. 2006;15(2):187–97.

    Article  Google Scholar 

  19. Blum C, Bunke D, Hungsberg M, Roelofs E, Joas A, Joas R, et al. The concept of sustainable chemistry: key drivers for the transition towards sustainable development. Sustain Chem Pharm. 2017;5:94–104.

    Article  CAS  Google Scholar 

  20. Graham DW, Smith VH. Designed ecosystem services: application of ecological principles in wastewater treatment engineering. Front Ecol Environ. 2004;2:199–206.

    Article  Google Scholar 

  21. Cabrol L, Poly F, Malhautier L, Pommier T, Lerondelle C, Verstraete W, et al. Management of microbial communities through transient disturbances enhances the functional resilience of nitrifying gas-biofilters to future disturbances. Environ Sci Technol. 2015;50(1):338–48.

    Article  Google Scholar 

Download references

Acknowledgements

This contribution was funded by and contributes to the research topic Chemicals in the Environment (CITE) within the Research Program Terrestrial Environment of the Helmholtz Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukas Y. Wick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wick, L.Y., Chatzinotas, A. (2019). Capacity of Ecosystems to Degrade Anthropogenic Chemicals. In: Schröter, M., Bonn, A., Klotz, S., Seppelt, R., Baessler, C. (eds) Atlas of Ecosystem Services. Springer, Cham. https://doi.org/10.1007/978-3-319-96229-0_28

Download citation

Publish with us

Policies and ethics