Skip to main content

Vulnerability of Ecosystem Services in Farmland Depends on Landscape Management

  • Chapter
  • First Online:

Abstract

Forty-four percent of Europe’s terrestrial surface is covered with agricultural land. Thus, agriculture strongly influences Europe’s environment, including ecological functions and processes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Plieninger T, Schleyer C, Schaich H, Ohnesorge B, Gerdes H, Hernández-Morcillo M, et al. Mainstreaming ecosystem services through reformed European agricultural policies. Conserv Lett. 2012;5(4):281–8.

    Article  Google Scholar 

  2. Plieninger T, Draux H, Fagerholm N, Bieling C, Bürgi M, Kizos T, et al. The driving forces of landscape change in Europe: a systematic review of the evidence. Land Use Policy. 2016;57:204–14.

    Article  Google Scholar 

  3. Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, et al. Biodiversity loss and its impact on humanity. Nature. 2012;486(7401):59–67.

    Article  CAS  Google Scholar 

  4. Garibaldi LA, Steffan-Dewenter I, Winfree R, Aizen MA, Bommarco R, Cunningham SA, et al. Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science. 2013;339(6127):1608–11.

    Article  CAS  Google Scholar 

  5. Kleijn D, Winfree R, Bartomeus I, Carvalheiro LG, Henry M, Isaacs R, et al. Delivery of crop pollination services is an insufficient argument for wild pollinator conservation. Nat Commun. 2015;6:7414.

    Article  Google Scholar 

  6. Jonsson M, Kaartinen R, Straub CS. Relationships between natural enemy diversity and biological control. Curr Opin Insect Sci. 2017;20:1–6.

    Article  Google Scholar 

  7. Rusch A, Chaplin-Kramer R, Gardiner MM, Hawro V, Holland J, Landis D, et al. Agricultural landscape simplification reduces natural pest control: a quantitative synthesis. Agric Ecosyst Environ. 2016;221:198–204.

    Article  Google Scholar 

  8. Loos J, Turtureanu PD, von Wehrden H, Hanspach J, Dorresteijn I, Frink JP, et al. Plant diversity in a changing agricultural landscape mosaic in Southern Transylvania (Romania). Agric Ecosyst Environ. 2014;199(0):350–7.

    Google Scholar 

  9. Fahrig L, Baudry J, Brotons L, Burel FG, Crist TO, Fuller RJ, et al. Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol Lett. 2011;14(2):101–12.

    Article  Google Scholar 

  10. Batáry P, Gallé R, Riesch F, Fischer C, Dormann CF, Mußhoff O, et al. The former iron curtain still drives biodiversity-profit trade-offs in German agriculture. Nat Ecol Evol. 2017;1:1279–84.

    Article  Google Scholar 

  11. Kennedy CM, Lonsdorf E, Neel MC, Williams NM, Ricketts TH, Winfree R, et al. A global quantitative synthesis of local and landscape effects on wild bee pollinators in agroecosystems. Ecol Lett. 2013;16:584–99.

    Article  Google Scholar 

  12. Chaplin-Kramer R, O’Rourke ME, Blitzer EJ, Kremen C. A meta-analysis of crop pest and natural enemy response to landscape complexity. Ecol Lett. 2011;14(9):922–32.

    Article  Google Scholar 

  13. Gámez-Virués S, Perović DJ, Gossner MM, Börschig C, Blüthgen N, De Jong H, et al. Landscape simplification filters species traits and drives biotic homogenization. Nat Commun. 2015;6:8568.

    Article  Google Scholar 

  14. Ricketts TH, Regetz J, Steffan-Dewenter I, Cunningham SA, Kremen C, Bogdanski A, et al. Landscape effects on crop pollination services: are there general patterns? Ecol Lett. 2008;11(5):499–515.

    Article  Google Scholar 

  15. Bianchi FJJA, Booij CJH, Tscharntke T. Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control. Proc Biol Soc. 2006;273(1595):1715–27.

    Article  CAS  Google Scholar 

  16. Tscharntke T, Batáry P, Dormann CF. Set-aside management: how do succession, sowing patterns and landscape context affect biodiversity? Agric Ecosyst Environ. 2011;143(1):37–44.

    Article  Google Scholar 

  17. Bosem Baillod A, Tscharntke T, Clough Y, Batáry P. Landscape-scale interactions of spatial and temporal cropland heterogeneity drive biological control of cereal aphids. J Appl Ecol. 2017; https://doi.org/10.1111/1365-2664.12910.

    Article  Google Scholar 

  18. Tscharntke T, Klein AM, Kruess A, Steffan-Dewenter I, Thies C. Landscape perspectives on agricultural intensification and biodiversity–ecosystem service management. Ecol Lett. 2005;8(8):857–74.

    Article  Google Scholar 

  19. Shackelford G, Steward PR, Benton TG, Kunin WE, Potts SG, Biesmeijer JC, et al. Comparison of pollinators and natural enemies: a meta-analysis of landscape and local effects on abundance and richness in crops. Biol Rev Camb Philos Soc. 2013;88(4):1002–21.

    Article  Google Scholar 

  20. Westphal C, Steffan-Dewenter I, Tscharntke T. Mass flowering crops enhance pollinator densities at a landscape scale. Ecol Lett. 2003;6:961–5.

    Article  Google Scholar 

  21. Pywell RF, Heard MS, Woodcock BA, Hinsley S, Ridding L, Nowakowski M, et al. Wildlife-friendly farming increases crop yield: evidence for ecological intensification. Proc Roy Soc B Biol Sci. 2015;282(1816):1740.

    Article  Google Scholar 

  22. Batáry P, Báldi A, Kleijn D, Tscharntke T. Landscape-moderated biodiversity effects of agri-environmental management: a meta-analysis. Proc Roy Soc B Biol Sci. 2011;278(1713):1894–902.

    Article  Google Scholar 

  23. Steffan-Dewenter I, Münzenberg U, Bürger C, Thies C, Tscharntke T. Scale-dependent effects of landscape context on three pollinator guilds. Ecology. 2002;83(5):1421–32.

    Article  Google Scholar 

  24. Rand TA, Tscharntke T. Contrasting effects of natural habitat loss on generalist and specialist aphid natural enemies. Oikos. 2007;116(8):1353–62.

    Article  Google Scholar 

Download references

Acknowledgements

Aliette Bosem Baillod was supported by a scholarship from the German Academic Exchange Service (DAAD), Svenja Bänsch acknowledges her scholarship by the German Federal Environmental Foundation (DBU) and Péter Batáry was funded through the DFG (BA 4438/2-1) and by the Economic Development and Innovation Operational Programme of Hungary (GINOP-2.3.2-15-2016-00019). Aliette Bosem Baillod and Annika Hass were supported by the ERA-Net BiodivERsA project “FarmLand” funded by the BMBF (German Ministry of Research and Education, FKZ: 01LC1104A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacqueline Loos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Loos, J. et al. (2019). Vulnerability of Ecosystem Services in Farmland Depends on Landscape Management. In: Schröter, M., Bonn, A., Klotz, S., Seppelt, R., Baessler, C. (eds) Atlas of Ecosystem Services. Springer, Cham. https://doi.org/10.1007/978-3-319-96229-0_15

Download citation

Publish with us

Policies and ethics