Skip to main content

Reverse Engineering Gene Regulatory Networks Using Graph Mining

  • Conference paper
  • First Online:
Machine Learning and Data Mining in Pattern Recognition (MLDM 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10934))

Abstract

Reverse engineering gene regulatory networks (GRNs), also known as GRN inference, refers to the process of reconstructing GRNs from gene expression data. A GRN is modeled as a directed graph in which nodes represent genes and edges show regulatory relationships between the genes. By predicting the edges to infer a GRN, biologists can gain a better understanding of regulatory circuits and functional elements in cells. Many bioinformatics tools have been developed to computationally reverse engineer GRNs. However, none of these tools is able to perform perfect GRN inference. In this paper, we propose a graph mining approach capable of discovering frequent patterns from the GRNs inferred by existing methods. These frequent or common patterns are more likely to occur in true regulatory networks. Experimental results on different datasets demonstrate the good quality of the discovered patterns, and the superiority of our approach over the existing GRN inference methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abduallah, Y., Turki, T., Byron, K., Du, Z., Cervantes-Cervantes, M., Wang, J.T.L.: Mapreduce algorithms for inferring gene regulatory networks from time-series microarray data using an information-theoretic approach. BioMed. Res. Int. 2017, 6261802 (2017)

    Article  Google Scholar 

  2. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proceedings of the 20th International Conference on Very Large Data Bases, pp. 487–499 (1994)

    Google Scholar 

  3. Angelini, C., Costa, V.: Understanding gene regulatory mechanisms by integrating ChIP-seq and RNA-seq data: statistical solutions to biological problems. Front. Cell Dev. Biol. 2, 51 (2014)

    Article  Google Scholar 

  4. Brazhnik, P., de la Fuente, A., Mendes, P.: Gene networks: how to put the function in genomics. Trends Biotechnol. 20(11), 467–472 (2002)

    Article  Google Scholar 

  5. Elloumi, M., Iliopoulos, C., Wang, J.T.L., Zomaya, A.Y.: Pattern Recognition in Computational Molecular Biology: Techniques and Approaches. Wiley, Hoboken (2016)

    MATH  Google Scholar 

  6. Huan, J., Wang, W., Prins, J.: Efficient mining of frequent subgraphs in the presence of isomorphism. In: Proceedings of the 3rd IEEE International Conference on Data Mining, pp. 549–552 (2003)

    Google Scholar 

  7. Huynh-Thu, V.A., Irrthum, A., Wehenkel, L., Geurts, P.: Inferring regulatory networks from expression data using tree-based methods. PLoS ONE 5(9), e12776 (2010)

    Article  Google Scholar 

  8. Huynh-Thu, V.A., Sanguinetti, G.: Combining tree-based and dynamical systems for the inference of gene regulatory networks. Bioinformatics 31(10), 1614–1622 (2015)

    Article  Google Scholar 

  9. Ideker, T., Krogan, N.J.: Differential network biology. Mol. Syst. Biol. 8(1), 565 (2012)

    Google Scholar 

  10. Inokuchi, A., Washio, T., Motoda, H.: Complete mining of frequent patterns from graphs: mining graph data. Mach. Learn. 50(3), 321–354 (2003)

    Article  Google Scholar 

  11. Jiang, C., Coenen, F., Zito, M.: A survey of frequent subgraph mining algorithms. Knowl. Eng. Rev. 28(1), 75–105 (2013)

    Article  Google Scholar 

  12. Kasar, S., Underbayev, C., Hassan, M., Ilev, I., Degheidy, H., Bauer, S., Marti, G., Lutz, C.S., Raveche, E., Batish, M.: Alterations in the mir-15a/16-1 loci impairs its processing and augments B-1 expansion in de novo mouse model of chronic lymphocytic leukemia (CLL). PLoS ONE 11(3), e0149331 (2016)

    Article  Google Scholar 

  13. Kuramochi, M., Karypis, G.: Finding frequent patterns in a large sparse graph. In: Proceedings of the SIAM International Conference on Data Mining (2004)

    Google Scholar 

  14. Leclerc, R.D.: Survival of the sparsest: robust gene networks are parsimonious. Mol. Syst. Biol. 4, 213 (2008)

    Article  Google Scholar 

  15. Margolin, A.A., Wang, K., Lim, W.K., Kustagi, M., Nemenman, I., Califano, A.: Reverse engineering cellular networks. Nat. Protoc. 1(2), 662–671 (2006)

    Article  Google Scholar 

  16. Nijssen, S., Kok, J.N.: The Gaston tool for frequent subgraph mining. Electron. Notes Theoret. Comput. Sci. 127(1), 77–87 (2005)

    Article  Google Scholar 

  17. Patel, N., Wang, J.T.L.: Semi-supervised prediction of gene regulatory networks using machine learning algorithms. J. Biosci. 40(4), 731–740 (2015)

    Article  Google Scholar 

  18. Schaffter, T., Marbach, D., Floreano, D.: GeneNetWeaver: in silico benchmark generation and performance profiling of network inference methods. Bioinformatics 27(16), 2263–2270 (2011)

    Article  Google Scholar 

  19. Shukla, S., Elson, G., Blackshear, P.J., Lutz, C.S., Leibovich, S.J.: 3’UTR AU-rich elements (AREs) and the RNA-binding protein Tristetraprolin (TTP) are not required for the LPS-mediated destabilization of phospholipase-C beta-2 mRNA in murine macrophages. Inflammation 40(2), 645–656 (2017)

    Article  Google Scholar 

  20. Werner, T., Dombrowski, S.M., Zgheib, C., Zouein, F.A., Keen, H.L., Kurdi, M., Booz, G.W.: Elucidating functional context within microarray data by integrated transcription factor-focused gene-interaction and regulatory network analysis. Eur. Cytokine Netw. 24(2), 75–90 (2013)

    Google Scholar 

  21. Yan, X., Han, J.: gSpan: Graph-based substructure pattern mining. In: Proceedings of the 2002 IEEE International Conference on Data Mining (2002)

    Google Scholar 

  22. Zhang, S., Wang, J.T.L.: Discovering frequent agreement subtrees from phylogenetic data. IEEE Trans. Knowl. Data Eng. 20(1), 68–82 (2008)

    Article  Google Scholar 

  23. Zoppoli, P., Morganella, S., Ceccarelli, M.: TimeDelay-ARACNE: reverse engineering of gene networks from time-course data by an information theoretic approach. BMC Bioinform. 11(1), 154 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Turki Turki or Jason T. L. Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jiang, H., Turki, T., Zhang, S., Wang, J.T.L. (2018). Reverse Engineering Gene Regulatory Networks Using Graph Mining. In: Perner, P. (eds) Machine Learning and Data Mining in Pattern Recognition. MLDM 2018. Lecture Notes in Computer Science(), vol 10934. Springer, Cham. https://doi.org/10.1007/978-3-319-96136-1_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96136-1_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96135-4

  • Online ISBN: 978-3-319-96136-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics