Skip to main content

Involvement of Cerebral Venous System in Ischemic Stroke

  • Chapter
  • First Online:

Part of the book series: Springer Series in Translational Stroke Research ((SSTSR))

Abstract

Recently, growing body of clinical evidence revealed the involvement of cerebral veins in ischemic stroke. The cerebral venous vasculature is no more a simple drainage system, but an active modulator for brain perfusion under hypo- or hyperperfusion conditions. In this chapter, evidence about cerebral medullary veins, cortical veins and venous outflow from cranium is provided. And the probable regulatory mechanisms are also described.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Yu X, Yuan L. Prominence of medullary veins on susceptibility-weighted images provides prognostic information in patients with subacute stroke. AJNR Am J Neuroradiol. 2016;37:423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhu S, Li Y, Lu H, Li H, Tong S. Imaging the early cerebral blood flow changes in rat middle cerebral artery occlusion stroke model. Conf Proc IEEE Eng Med Biol Soc. 2012;2012:2655–8.

    Google Scholar 

  3. Liebeskind DS, Feldmann E. Imaging of cerebrovascular disorders: precision medicine and the collaterome. Ann N Y Acad Sci. 2016;1366(1):40–8.

    Article  PubMed  Google Scholar 

  4. Terasawa Y, Yamamoto N, Morigaki R, Fujita K, Izumi Y, Satomi J, et al. Brush sign on 3-T T2*-weighted MRI as a potential predictor of hemorrhagic transformation after tissue plasminogen activator therapy. Stroke. 2014;45(1):274–6.

    Article  CAS  PubMed  Google Scholar 

  5. Mittal S, Wu Z, Neelavalli J, Haacke EM. Susceptibility-weighted imaging: technical aspects and clinical applications, part 2. AJNR Am J Neuroradiol. 2009;30(2):232–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Horie N, Morikawa M, Nozaki A, Hayashi K, Suyama K, Nagata I. “Brush Sign” on susceptibility-weighted MR imaging indicates the severity of moyamoya disease. AJNR Am J Neuroradiol. 2011;32(9):1697–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Verma RK, Hsieh K, Gratz PP, Schankath AC, Mordasini P, Zubler C, et al. Leptomeningeal collateralization in acute ischemic stroke: impact on prominent cortical veins in susceptibility-weighted imaging. Eur J Radiol. 2014;83(8):1448–54.

    Article  PubMed  Google Scholar 

  8. Behfar A, Terzic A. Stem cells versus senescence: the yin and yang of cardiac health. J Am Coll Cardiol. 2015;65(2):148–50.

    Article  PubMed  Google Scholar 

  9. Kao HW, Tsai FY, Hasso AN. Predicting stroke evolution: comparison of susceptibility-weighted MR imaging with MR perfusion. Eur Radiol. 2012;22(7):1397–403.

    Article  PubMed  Google Scholar 

  10. Mucke J, Mohlenbruch M, Kickingereder P, Kieslich PJ, Baumer P, Gumbinger C, et al. Asymmetry of deep medullary veins on susceptibility weighted MRI in patients with acute MCA stroke is associated with poor outcome. PLoS One. 2015;10(4):e0120801.

    Article  PubMed  PubMed Central  Google Scholar 

  11. van den Wijngaard IR, Wermer MJ, Boiten J, Algra A, Holswilder G, Meijer FJ, et al. Cortical venous filling on dynamic computed tomographic angiography: a novel predictor of clinical outcome in patients with acute middle cerebral artery stroke. Stroke. 2016;47(3):762–7.

    Article  PubMed  Google Scholar 

  12. Parthasarathy R, Kate M, Rempel JL, Liebeskind DS, Jeerakathil T, Butcher KS, et al. Prognostic evaluation based on cortical vein score difference in stroke. Stroke. 2013;44(10):2748–54.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Parthasarathy R, Sohn SI, Jeerakathil T, Kate MP, Mishra SM, Nambiar VK, et al. A combined arterial and venous grading scale to predict outcome in anterior circulation ischemic stroke. J Neuroimaging. 2015;25:969.

    Article  PubMed  Google Scholar 

  14. Beyer SE, Thierfelder KM, von Baumgarten L, Rottenkolber M, Meinel FG, Janssen H, et al. Strategies of collateral blood flow assessment in ischemic stroke: prediction of the follow-up infarct volume in conventional and dynamic CTA. AJNR Am J Neuroradiol. 2015;36(3):488–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Munuera J, Blasco G, Hernandez-Perez M, Daunis IEP. Venous imaging-based biomarkers in acute ischaemic stroke. J Neurol Neurosurg Psychiatry. 2017;88(1):62–9.

    Article  PubMed  Google Scholar 

  16. Abud DG, Spelle L, Piotin M, Mounayer C, Vanzin JR, Moret J. Venous phase timing during balloon test occlusion as a criterion for permanent internal carotid artery sacrifice. AJNR Am J Neuroradiol. 2005;26(10):2602–9.

    PubMed  PubMed Central  Google Scholar 

  17. Yura S, Sako K, Yonemasu Y. [The effects of disturbance of cerebral venous drainage on focal cerebral blood flow and ischemic cerebral edema]. No To Shinkei. 1990;42(3):269–75.

    Google Scholar 

  18. Yu W, Rives J, Welch B, White J, Stehel E, Samson D. Hypoplasia or occlusion of the ipsilateral cranial venous drainage is associated with early fatal edema of middle cerebral artery infarction. Stroke. 2009;40(12):3736–9.

    Article  PubMed  Google Scholar 

  19. Chilian WM, Mass HJ, Williams SE, Layne SM, Smith EE, Scheel KW. Microvascular occlusions promote coronary collateral growth. Am J Phys. 1990;258(4 Pt 2):H1103–11.

    CAS  Google Scholar 

  20. Faber JE, Chilian WM, Deindl E, van Royen N, Simons M. A brief etymology of the collateral circulation. Arterioscler Thromb Vasc Biol. 2014;34(9):1854–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Adamson RH, Sarai RK, Altangerel A, Clark JF, Weinbaum S, Curry FE. Microvascular permeability to water is independent of shear stress, but dependent on flow direction. Am J Physiol Heart Circ Physiol. 2013;304(8):H1077–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Faber JE, Moore SM, Lucitti JL, Aghajanian A, Zhang H. Sex differences in the cerebral collateral circulation. Transl Stroke Res. 2017;8:273.

    Article  PubMed  Google Scholar 

  23. Sbarbati A, Pietra C, Baldassarri AM, Guerrini U, Ziviani L, Reggiani A, et al. The microvascular system in ischemic cortical lesions. Acta Neuropathol. 1996;92(1):56–63.

    Article  CAS  PubMed  Google Scholar 

  24. Pranevicius M, Pranevicius O. Cerebral venous steal: blood flow diversion with increased tissue pressure. Neurosurgery. 2002;51(5):1267–73; discussion 73-4.

    Article  PubMed  Google Scholar 

  25. Pranevicius O, Pranevicius M, Pranevicius H, Liebeskind DS. Transition to collateral flow after arterial occlusion predisposes to cerebral venous steal. Stroke. 2012;43(2):575–9.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Altura BM, Gebrewold A, Zheng T, Altura BT. Sphingomyelinase and ceramide analogs induce vasoconstriction and leukocyte-endothelial interactions in cerebral venules in the intact rat brain: insight into mechanisms and possible relation to brain injury and stroke. Brain Res Bull. 2002;58(3):271–8.

    Article  CAS  PubMed  Google Scholar 

  27. del Zoppo GJ, Mabuchi T. Cerebral microvessel responses to focal ischemia. J Cereb Blood Flow Metab. 2003;23(8):879–94.

    Article  PubMed  Google Scholar 

  28. Schwarzmaier SM, Kim SW, Trabold R, Plesnila N. Temporal profile of thrombogenesis in the cerebral microcirculation after traumatic brain injury in mice. J Neurotrauma. 2010;27(1):121–30.

    Article  PubMed  Google Scholar 

  29. Ishikawa M, Cooper D, Arumugam TV, Zhang JH, Nanda A, Granger DN. Platelet-leukocyte-endothelial cell interactions after middle cerebral artery occlusion and reperfusion. J Cereb Blood Flow Metab. 2004;24(8):907–15.

    Article  CAS  PubMed  Google Scholar 

  30. Abumiya T, Fitridge R, Mazur C, Copeland BR, Koziol JA, Tschopp JF, et al. Integrin alpha(IIb)beta(3) inhibitor preserves microvascular patency in experimental acute focal cerebral ischemia. Stroke. 2000;31(6):1402–9; discussion 9-10.

    Article  CAS  PubMed  Google Scholar 

  31. Wang X, Feuerstein GZ. Induced expression of adhesion molecules following focal brain ischemia. J Neurotrauma. 1995;12(5):825–32.

    Article  CAS  PubMed  Google Scholar 

  32. Ames A 3rd, Wright RL, Kowada M, Thurston JM, Majno G. Cerebral ischemia. II. The no-reflow phenomenon. Am J Pathol. 1968;52(2):437–53.

    PubMed  PubMed Central  Google Scholar 

  33. Soares BP, Tong E, Hom J, Cheng SC, Bredno J, Boussel L, et al. Reperfusion is a more accurate predictor of follow-up infarct volume than recanalization: a proof of concept using CT in acute ischemic stroke patients. Stroke. 2010;41(1):e34–40.

    Article  PubMed  Google Scholar 

  34. Chiang J, Kowada M, Ames A 3rd, Wright RL, Majno G. Cerebral ischemia. III. Vascular changes. Am J Pathol. 1968;52(2):455–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Gerber JC, Miaux YJ, von Kummer R. Scoring flow restoration in cerebral angiograms after endovascular revascularization in acute ischemic stroke patients. Neuroradiology. 2015;57(3):227–40.

    Article  PubMed  Google Scholar 

  36. Chen S, Chen Y, Xu L, Matei N, Tang J, Feng H, et al. Venous system in acute brain injury: mechanisms of pathophysiological change and function. Exp Neurol. 2015;272:4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ritter LS, Orozco JA, Coull BM, McDonagh PF, Rosenblum WI. Leukocyte accumulation and hemodynamic changes in the cerebral microcirculation during early reperfusion after stroke. Stroke. 2000;31(5):1153–61.

    Article  CAS  PubMed  Google Scholar 

  38. Al-Ali F, Elias JJ, Filipkowski DE, Faber JE. Acute ischemic stroke treatment, part 1: patient selection “the 50% barrier and the capillary index score”. Front Neurol. 2015;6:83.

    PubMed  PubMed Central  Google Scholar 

  39. Liu S, Connor J, Peterson S, Shuttleworth CW, Liu KJ. Direct visualization of trapped erythrocytes in rat brain after focal ischemia and reperfusion. J Cereb Blood Flow Metab. 2002;22(10):1222–30.

    Article  PubMed  Google Scholar 

  40. Hussein HM, Georgiadis AL, Vazquez G, Miley JT, Memon MZ, Mohammad YM, et al. Occurrence and predictors of futile recanalization following endovascular treatment among patients with acute ischemic stroke: a multicenter study. AJNR Am J Neuroradiol. 2010;31(3):454–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Olsen TS, Larsen B, Skriver EB, Herning M, Enevoldsen E, Lassen NA. Focal cerebral hyperemia in acute stroke. Incidence, pathophysiology and clinical significance. Stroke. 1981;12(5):598–607.

    Article  CAS  PubMed  Google Scholar 

  42. Dorn F, Kuntze-Soderqvist A, Popp S, Lockau H, Haller B, Zimmer C, et al. Early venous drainage after successful endovascular recanalization in ischemic stroke—a predictor for final infarct volume? Neuroradiology. 2012;54(7):745–51.

    Article  CAS  PubMed  Google Scholar 

  43. Marchal G, Furlan M, Beaudouin V, Rioux P, Hauttement JL, Serrati C, et al. Early spontaneous hyperperfusion after stroke. A marker of favourable tissue outcome? Brain. 1996;119(Pt 2):409–19.

    Article  PubMed  Google Scholar 

  44. Ohta H, Nakano S, Yokogami K, Iseda T, Yoneyama T, Wakisaka S. Appearance of early venous filling during intra-arterial reperfusion therapy for acute middle cerebral artery occlusion: a predictive sign for hemorrhagic complications. Stroke. 2004;35(4):893–8.

    Article  PubMed  Google Scholar 

  45. Mayhan WG, Werber AH, Heistad DD. Protection of cerebral vessels by sympathetic nerves and vascular hypertrophy. Circulation. 1987;75(1 Pt 2):I107–12.

    CAS  PubMed  Google Scholar 

  46. Mayhan WG, Heistad DD. Role of veins and cerebral venous pressure in disruption of the blood-brain barrier. Circ Res. 1986;59(2):216–20.

    Article  CAS  PubMed  Google Scholar 

  47. Edvinsson L, Hogestatt ED, Uddman R, Auer LM. Cerebral veins: fluorescence histochemistry, electron microscopy, and in vitro reactivity. J Cereb Blood Flow Metab. 1983;3(2):226–30.

    Article  CAS  PubMed  Google Scholar 

  48. Budohoski KP, Czosnyka M, Kirkpatrick PJ, Smielewski P, Steiner LA, Pickard JD. Clinical relevance of cerebral autoregulation following subarachnoid haemorrhage. Nat Rev Neurol. 2013;9(3):152–63.

    Article  CAS  PubMed  Google Scholar 

  49. Kulik T, Kusano Y, Aronhime S, Sandler AL, Winn HR. Regulation of cerebral vasculature in normal and ischemic brain. Neuropharmacology. 2008;55(3):281–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Palomares SM, Cipolla MJ. Vascular protection following cerebral ischemia and reperfusion. J Neurol Neurophysiol. 2011;2011:S1.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tong, LS., Yu, Yn., Tang, J., Lou, M., Zhang, J.H. (2019). Involvement of Cerebral Venous System in Ischemic Stroke. In: Lou, M., et al. Cerebral Venous System in Acute and Chronic Brain Injuries. Springer Series in Translational Stroke Research. Springer, Cham. https://doi.org/10.1007/978-3-319-96053-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96053-1_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96052-4

  • Online ISBN: 978-3-319-96053-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics