Skip to main content

Two Possible Paradoxes in Numerical Comparisons of Optimization Algorithms

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10955))

Abstract

Comparison strategies of benchmarking optimization algorithms are considered. Two strategies, namely “C2” and “C2+”, are defined. Existing benchmarking methods can be regarded as different applications of them. Mathematical models are developed for both “C2” and “C2+”. Based on these models, two possible paradoxes, namely the cycle ranking and the survival of the non-fittest, are deduced for three optimization algorithms’ comparison. The probabilities of these two paradoxes are calculated. It is shown that the value and the parity of the number of test problems affect the probabilities significantly. When there are only dozens of test problems, there is about 75% probability to obtain a normal ranking result for three optimization algorithms’ numerical comparison, about 9% for cycle ranking, and 16% for survival of the non-fittest.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Gaviano, M., Kvasov, D., Lera, D., Sergeyev, Y.D.: Algorithm 829: software for generation of classes of test functions with known local and global minima for global optimization. ACM Trans. Math. Softw. 9, 469–480 (2003)

    Article  MathSciNet  Google Scholar 

  2. Hansen, N., Auger, A., Ros, R., Finck, S. and Pošík P.: Comparing results of 31 algorithms from the black-box optimization benchmarking bbob-2009. In: Proceedings of the 12th annual conference companion on genetic and evolutionary computation, pp. 1689–1696 (2010)

    Google Scholar 

  3. Awad, N.H., Ali, M.Z., Liang, J.J., Qu, B.Y., Suganthan, P.N.: Problem definitions and evaluation criteria for the CEC2017 special session and competition on single objective bound constrained real parameter numerical optimization. Nanyang Technological University, Singapore, Technical report, November 2016

    Google Scholar 

  4. Hansen, N., Auger, A., Mersmann, O., Tušar, T., Brockhoff, D.: Coco: A platform for comparing continuous optimizers in a black-box setting. ArXiv e-prints arXiv:1603.08785 (2016)

  5. Gong, M., Wang, Z., Zhu, Z., Jiao, L.: A similarity-based multiobjective evolutionary algorithm for deployment optimization of near space communication system. IEEE Trans. Evol. Comput. 21, 878–897 (2017)

    Article  Google Scholar 

  6. Valle, Y., Venayagamoorthy, G.K., Mohagheghi, S., Hernandez, J.-C., Harley, R.G.: Particle swarm optimization: Basic concepts, variants and applications in power systems. Inf. Sci. 12, 171–195 (2008)

    Google Scholar 

  7. Wang, Y., Xu, B., Sun, G., Yang, S.: A two-phase differential evolution for uniform designs in constrained experimental domains. IEEE Trans. Evol. Comput. 21, 665–680 (2017)

    Article  Google Scholar 

  8. Dolan, E.D., Moŕe, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91, 201–213 (2002)

    Article  MathSciNet  Google Scholar 

  9. Liu, Q., Zeng, J.: Global optimization by multilevel partition. J. Glob. Optim. 61, 47–69 (2015)

    Article  MathSciNet  Google Scholar 

  10. Liu, Q., Zeng, J., Yang, G.: MrDIRECT: a multilevel robust DIRECT algorithm for global optimization problems. J. Glob. Optim. 62, 205–227 (2015)

    Article  MathSciNet  Google Scholar 

  11. Moŕe, J., Wild, S.: Benchmarking derivative-free optimization algorithms. SIAM J. Optim. 20, 172–191 (2009)

    Article  MathSciNet  Google Scholar 

  12. Omidvar, M.N., Yang, M., Mei, Y., Li, X., Yao, X.: Dg2: A faster and more accurate differential grouping for large-scale black-box optimization. IEEE Trans. Evol. Comput. 21, 929–942 (2017)

    Article  Google Scholar 

  13. Yang, M., Omidvar, M.N., Li, C., Li, X., Cai, Z., Kazimipour, B., Yao, X.: Efficient resource allocation in cooperative co-evolution for large-scale global optimization. IEEE Trans. Cybern. 21, 493–505 (2017)

    Google Scholar 

  14. Li, X., Yao, X.: Cooperatively coevolving particle swarms for large scale optimization. IEEE Trans. Evol. Comput. 16, 210–224 (2012)

    Article  Google Scholar 

  15. Qin, Q., Cheng, S., Zhang, Q., Li, L., Shi, Y.: Particle swarm optimization with interswarm interactive learning strategy. IEEE Trans. Cybern. 46, 2238–2251 (2015)

    Article  Google Scholar 

  16. Gong, Y.-J., Li, J.-J., Zhou, Y., Li, Y., Chung, H.S.-H., Shi, Y.-H., Zhang, J.: Genetic learning particle swarm optimization. IEEE Trans. Cybern. 46, 2277–2290 (2016)

    Article  Google Scholar 

  17. Yang, Q., Chen, W.-N., Gu, T., Zhang, H., Deng, J.D., Li, Y., Zhang, J.: Segment-based predominant learning swarm optimizer for large-scale optimization. IEEE Trans. Cybern. 47, 2896–2910 (2017)

    Article  Google Scholar 

  18. Liu, Q.: Order-2 stability analysis of particle swarm optimization. Evol. Comput. 23, 187–216 (2015)

    Article  Google Scholar 

  19. Liu, Q., Chen, W.-N., Deng, J.D., Gu, T., Zhang, H., Yu, Z., Zhang, J.: Benchmarking stochastic algorithms for global optimization problems by visualizing confidence intervals. IEEE Trans. Cybern. 47, 2924–2937 (2017)

    Article  Google Scholar 

  20. Hansen N., Auger A., Brockhoff D., Tušar D., and Tušar T.: Coco: Performance assessment. ArXiv e-prints arXiv:1605.03560 (2016)

  21. Maassen, H., Bezembinder, T.: Generating random weak orders and the probability of a Condorcet winner. Soc. Choice Welf. 19, 517–532 (2002)

    Article  MathSciNet  Google Scholar 

  22. Dwork C., Kumar R., Naor M., and Sivakumar D.: Rank aggregation methods for the web. In: Proceedings of the 10th International Conference on World Wide Web, pp. 613–622. ACM (2001)

    Google Scholar 

  23. Cucuringu, M.: Sync-rank: Robust ranking, constrained ranking and rank aggregation via eigenvector and SDP synchronization. IEEE Trans. Netw. Sci. Eng. 3, 58–79 (2016)

    Article  MathSciNet  Google Scholar 

  24. Li, Y.H., Zhan, Z.-H., Lin, S.J., Zhang, J., Luo, X.N.: Competitive and cooperative particle swarm optimization with information sharing mechanism for global optimization problems. Inf. Sci. 293, 370–382 (2015)

    Article  Google Scholar 

  25. Chen, W.-N., Zhang, J., Lin, Y., Chen, N., Zhan, Z.-H., Chung, H.S.-H., Li, Y., Shi, Y.-H.: Particle swarm optimization with an aging leader and challengers. IEEE Trans. Evol. Comput. 17, 241–258 (2013)

    Article  Google Scholar 

  26. Liu, Q., Wei, W., Yuan, H., Zhan, Z.-H., Li, Y.: Topology selection for particle swarm optimization. Inf. Sci. 363, 154–173 (2016)

    Article  Google Scholar 

  27. Rios, L.M., Sahinidis, N.V.: Derivative-free optimization: a review of algorithms and comparison of software implementations. J. Glob. Optim. 56, 1247–1293 (2013)

    Article  MathSciNet  Google Scholar 

  28. Paulavičius, R., Sergeyev, Y.D., Kvasov, D.E., Žlinskas, J.: Globally-biased DISIMPL algorithm for expensive global optimization. J. Glob. Optim. 59, 545–567 (2014)

    Article  MathSciNet  Google Scholar 

  29. Deemen, A.V.: On the empirical relevance of condorcet’s paradox. Pub. Choice 158, 311–330 (2014)

    Article  Google Scholar 

  30. Gehrlein, W.V.: Condorcet’s Paradox. Springer, Berlin (2006)

    MATH  Google Scholar 

  31. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1, 67–82 (1997)

    Article  Google Scholar 

  32. Diss, M., Gehrlein, W.V.: Borda’s Paradox and weighted scoring rules. Soc. Choice Welf. 38, 121–136 (2012)

    Article  MathSciNet  Google Scholar 

  33. Gehrlein, W.V., Lepelley, D.: On the probability of observing Borda’s paradox. Soc. Choice Welf. 35, 1–23 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgment

This work was supported by National Key R&D Program of China (No. 2016YFD0400206), NSF of China (No. 61773119) and NSF of Guangdong Province (No. 2015A030313648).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yun Li or Ling Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, Q., Chen, W., Cao, Y., Li, Y., Wang, L. (2018). Two Possible Paradoxes in Numerical Comparisons of Optimization Algorithms. In: Huang, DS., Jo, KH., Zhang, XL. (eds) Intelligent Computing Theories and Application. ICIC 2018. Lecture Notes in Computer Science(), vol 10955. Springer, Cham. https://doi.org/10.1007/978-3-319-95933-7_77

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95933-7_77

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95932-0

  • Online ISBN: 978-3-319-95933-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics