Skip to main content

Two-Echelon Logistics Distribution Routing Optimization Problem Based on Colliding Bodies Optimization with Cue Ball

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10954))

Included in the following conference series:

  • 2811 Accesses

Abstract

Two-echelon logistics distribution routing problem is an important optimization problem of the logistics distribution networks. It is composed of distribution center location problem and distribution routing problem. Distribution center location problem aims to find the best locations of distribution centers from all the distribution points. Meanwhile, the distribution center needs to be assigned to serve the distribution points. The goal of distribution routing problem is to decrease the total cost of delivery. In this paper, an improved version, colliding bodies optimization with cue ball (CBCBO), is proposed to tackle two-echelon logistics distribution routing problem. The new algorithm improves the lack of the colliding bodies optimization (CBO) algorithm which the number of populations must be even. The new approach based cue ball enhanced exploration ability. A strategy, elite opposition strategy, is used to promote exploitation ability. In the last, the effectiveness of the new algorithm is tested by simulation experiment. The proposed approach demonstrates its capability to optimize two-echelon logistics distribution routing problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kaveh, A., Mahdavai, V.R.: Colliding Bodies Optimization method for optimum design of truss structures with continuous variables. Adv. Eng. Softw. 70, 1–12 (2014)

    Article  Google Scholar 

  2. Kaveh, A., Mahdavi, V.R.: Optimal design of truss structures with discrete variables using colliding bodies optimization. Colliding Bodies Optimization: Extensions and Applications, pp. 87–104. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19659-6_4

    Chapter  MATH  Google Scholar 

  3. Shayanfar, M.A., Kaveh, A., Eghlidos, O., et al.: Damage detection of bridge structures in time domain via enhanced colliding bodies optimization. J. Thorac. Cardio Vasc. Surg. 76(4), 483–488 (2016)

    Google Scholar 

  4. Panda, A., Pani, S.: Multi-objective colliding bodies optimization. In: Pant, M., Deep, K., Bansal, J., Nagar, A., Das, K. (eds.) Proceedings of Fifth International Conference on Soft Computing for Problem Solving. Advances in Intelligent Systems and Computing, vol. 436, pp. 651–664. Springer, Singapore (2016). https://doi.org/10.1007/978-981-10-0448-3_54

    Chapter  Google Scholar 

  5. Kaveh, A.: Construction site layout planning problem using two new meta-heuristic algorithms. Iran. J. Sci. Technol. Trans. Civ. Eng. 40, 263–275 (2017)

    Article  Google Scholar 

  6. Kaveh, A.: Modification of ground motions using enhanced colliding bodies optimization algorithm. Applications of Metaheuristic Optimization Algorithms in Civil Engineering, pp. 213–234. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-48012-1_12

    Chapter  MATH  Google Scholar 

  7. Zeng, Q., et al.: Location selection of multiple logistics distribution center based on particle swarm optimization. In: Huang, D.-S., Bevilacqua, V., Premaratne, P. (eds.) ICIC 2016. LNCS, vol. 9771, pp. 651–658. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42291-6_65

    Chapter  Google Scholar 

  8. Wang, Y., Ma, X.L., Wang, Y.H., Mao, H.J., Zhang, Y.: Location optimization of multiple distribution centers under fuzzy environment. J. Zhejiang Univ. Sci. A 13(10), 782–798 (2012)

    Article  Google Scholar 

  9. Chen, J.: Optimization route of food logistics distribution based on genetic and graph cluster scheme algorithm. Adv. J. Food Sci. Technol. 8(5), 359–362 (2015)

    Article  Google Scholar 

  10. Xin, K.J., Qin, Z.Y.: Study on logistics distribution route optimization based on clustering algorithm and ant colony algorithm. Logistics Eng. Manag. 9(1), 1245–1250 (2014)

    Google Scholar 

  11. Wang, T.: Study on optimization of logistics distribution route based on chaotic PSO. Comput. Eng. Appl. 47(29), 218–221 (2011)

    Google Scholar 

  12. Hua, X., Hu, X., Yuan, W.: Research optimization on logistics distribution center location based on adaptive particle swarm algorithm. Optik Int. J. Light Electron Opt. 127(20), 8443–8450 (2016)

    Article  Google Scholar 

  13. Yin, P.Y., Chuang, Y.L.: Adaptive memory artificial bee colony algorithm for green vehicle routing with cross-docking. Appl. Math. Model. 40(21–22), 9302–9315 (2016)

    Article  MathSciNet  Google Scholar 

  14. Kaveh, A., Mahdavai, V.R.: Colliding bodies optimization: a novel meta-heuristic method. Comput. Struct. 139, 18–27 (2014)

    Article  Google Scholar 

  15. Ma, X., Ma, X., Xu, M., et al.: Two-echelon logistics distribution region partitioning problem based on a hybrid particle swarm optimization-genetic algorithm. Expert Syst. Appl. 42(12), 5019–5031 (2015)

    Article  Google Scholar 

Download references

Acknowledgment

This work is supported by National Science Foundation of China under Grants No. 61463007; 61563008. Project of Guangxi University for Nationalities Science Foundation under Grant No. 2016GXNSFAA380264.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongquan Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, X., Zhou, Y., Lei, M., Wang, P., Niu, Y. (2018). Two-Echelon Logistics Distribution Routing Optimization Problem Based on Colliding Bodies Optimization with Cue Ball. In: Huang, DS., Bevilacqua, V., Premaratne, P., Gupta, P. (eds) Intelligent Computing Theories and Application. ICIC 2018. Lecture Notes in Computer Science(), vol 10954. Springer, Cham. https://doi.org/10.1007/978-3-319-95930-6_82

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95930-6_82

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95929-0

  • Online ISBN: 978-3-319-95930-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics