Skip to main content

Intracranial Electrode Investigations in the Presurgical Evaluation of Drug-Resistant Epilepsy

  • Chapter
  • First Online:
Epilepsy Surgery and Intrinsic Brain Tumor Surgery
  • 1278 Accesses

Abstract

In the field of epilepsy surgery, intracranial electrode (ICE) studies can overcome several limitations of surface electroencephalograms (EEGs). To briefly summarize the most important of them:

  1. (a)

    Conduction of the brain’s electrical activity to surface electrodes is significantly hampered by the poor conductivity of the skull [1, 2]. Signals of particular interest (e.g., sharp waves) need to recruit at least a 10–15 square centimeter area of cortical surface in order to be detectable by surface electrodes [3]. Signals recruiting less than that are only recorded by exception. Contamination by muscle and other artifacts is another source of difficulty with signal detection and interpretation.

  2. (b)

    Initial fast-frequency components of the ictal epileptic discharge (particularly important for ictal-onset region localization) are also attenuated by the intervening layers between the cortex and the skull. An ictal EEG rhythm may be seen only after considerable propagation from the site of origin has taken place following recruitment of extensive cortical surface and evolution to synchronized, lower frequency activity [4, 5].

  3. (c)

    Signals from “hidden” brain regions at a distance from surface recording electrodes (especially from the interhemispheric fissure and basal and medial frontal regions) are also, barely, recorded [6, 7].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nair D, Burgess R, McIntyre C, Luders H-O. Chronic subdural electrodes in the management of epilepsy. Clin Neurophysiol. 2008;119:11–28.

    Article  PubMed  Google Scholar 

  2. Pierre G. Neuronal generators and the problem of localization in electroencephalography: application of volume conductor theory to electroencephalography. J Clin Neurophysiol. 1985;2:327–54.

    Article  Google Scholar 

  3. Tao J, Ray A, Hawes-Ebersole S, Ebersole J. Intracranial EEG substrates of scalp interictal spikes. Epilepsia. 2005;46:69–676.

    Article  Google Scholar 

  4. Alarcon G. Electrophysiological aspects of interictal and ictal activity in human partial epilepsy. Seizure. 1996;5:7–33.

    Article  CAS  PubMed  Google Scholar 

  5. Tao J, Baldwin M, Ray A, Hawes-Ebersole S, Ebersole J. The impact of cerebral source area and synchrony on recording scalp electroencephalography ictal patterns. Epilepsia. 2007;48:2167–76.

    Article  PubMed  Google Scholar 

  6. Unnvongse K, Wehner T, Foldvary-Schaeffer N. Mesial frontal lobe epilepsy. J Clin Neurophysiol. 2012;29:371–8.

    Article  Google Scholar 

  7. Kriegel M, Roberts M, Jobst B. Orbitofrontal and insular epilepsy. J Clin Neurophysiol. 2012;29:385–91.

    Article  PubMed  Google Scholar 

  8. Lesser R, Krone N, Weber W. Subdural electrodes. Clin Neurophysiol. 2010;121:1376–92.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Widdess-Walsh P, Jehi L, Nair D, Kotagal P, Bingaman W, Najm I. Subdural electrode analysis in focal cortical dysplasia: predictors of surgical outcome. Neurology. 2007;69:660–7.

    Article  CAS  PubMed  Google Scholar 

  10. Klem G, Nehamkin S. Invasive electrodes in long-term monitoring. In: Luders H-O, editor. Textbook of epilepsy surgery. London: Informa; 2008. p. 623–8.

    Chapter  Google Scholar 

  11. Sanchez-Fernandez I, Loddenkemper T. Electrocorticography for seizure foci mapping in epilepsy surgery. J Clin Neurophysiol. 2013;30:554–70.

    Article  Google Scholar 

  12. Palmini A, Gambardella A, Andermann F, Dubeau F, Da Costa J, Olivier A, et al. Intrinsic epileptogenicity of human dyplastic cortex as suggested by corticography and surgical results. Ann Neurol. 1995;37:476–87.

    Article  CAS  PubMed  Google Scholar 

  13. Duchowny M. Clinical, functional and neurophysiologic assessment of dysplastic cortical networks: implications for cortical functioning and surgical management. Epilepsia. 2009;50(Suppl 9):19–27.

    Article  PubMed  Google Scholar 

  14. Ferrier C, Alarcon G, Engelsman J, Binnie C, Koutroumanidis M, Polkey C, et al. Relevance of residual histologic and electrocorticographic abnormalities for surgical outcome in frontal lobe epilepsy. Epilepsia. 2001;42:363–71.

    Article  CAS  PubMed  Google Scholar 

  15. Tran T, Spencer S, Javidan M, Pacia S, Marks D, Spencer D. Significance of spikes recorded on intraoperative electrocorticography in patients with brain tumors and epilepsy. Epilepsia. 1997;38:1132–9.

    Article  CAS  PubMed  Google Scholar 

  16. Ferrier C, Aronika E, Leijten F, Spliet W, Van Huffelen A, Van Rijen P, Binnie C. Electrocorticographic discharge patterns in glioneuronal tumors and focal cortical dysplasia. Epilepsia. 2006;47:1477–86.

    Article  PubMed  Google Scholar 

  17. Zaghloul K, Schramm J. Surgical management of glioneuronal tumors with drug-resistant epilepsy. Acta Neurochir. 2011;153:1551–9.

    Article  PubMed  Google Scholar 

  18. Tran T, Spencer S, Marks D, Javidan M, Pacia S, Spencer D. Significance of spikes recorded on electrocorticography in non-lesional medial temporal lobe epilepsy. Ann Neurol. 1995;38:763–70.

    Article  CAS  PubMed  Google Scholar 

  19. Schwartz T, Bazil C, Walczak T, Chan S, Pedley T, Goodman R. The predictive value of intraoperative electrocorticography in resections for limbic epilepsy associated with mesial temporal sclerosis. Neurosurgery. 1997;40:302–11.

    Article  CAS  PubMed  Google Scholar 

  20. Gilliam F, Faught E, Martin R, Bowling S, Bilir E, Thomas J, et al. Predictive value of MRI-identified medial temporal sclerosis for surgical outcome in temporal lobe epilepsy: an intent to treat analysis. Epilepsia. 2000;41:963–6.

    Article  CAS  PubMed  Google Scholar 

  21. Berg A, Vickrey B, Langfitt J, Sperling M, Walczak T, Shinnar S, et al. The multicenter study of epilepsy surgery: recruitment and selection for surgery. Epilepsia. 2003;44:1425–33.

    Article  PubMed  Google Scholar 

  22. Cendes F, Li M, Watson C, Andermann F, Dubeau F, Arnold D. Is ictal recording mandatory in temporal lobe epilepsy? Arch Neurol. 2000;57:497–500.

    Article  CAS  PubMed  Google Scholar 

  23. Jayakar P, Gaillard W, Tripathi M, Liberson M, Mathern G, Cross H. Diagnostic test utilization in evaluation for resective epilepsy surgery in children. Epilepsia. 2014;55:507–18.

    Article  PubMed  Google Scholar 

  24. Rosenow F, Menzler K. Invasive studies in tumor-related epilepsy: when are they indicated and with what kind of electrodes? Epilepsia. 2013;54(Suppl 9):61–5.

    Article  PubMed  Google Scholar 

  25. Ryvlin P, Cross H, Rheims S. Epilepsy surgery in children and adults. Lancet Neurol. 2014;13:1114–26.

    Article  PubMed  Google Scholar 

  26. Garganis K, Kokkinos V, Zountsas B. Extratemporal surface EEG features do not preclude successful surgical outcomes in drug-resistant epilepsy patients with unitemporal MRI lesions. Epileptic Disord. 2012;14:275–89.

    PubMed  Google Scholar 

  27. Jayakar P, Gotman J, Harvey S, Palmini A, Tassi L, Schomer D, et al. Diagnostic utility of invasive EEG for epilepsy surgery: indications, modalities and techniques. Epilepsia. 2016;57:1735–47.

    Article  PubMed  Google Scholar 

  28. Chauvel P, Delgado-Esqueta A, Halgren E, Bancaud J. Frontal lobe seizures and epilepsies. New York: Raven Press; 1992.

    Google Scholar 

  29. Lhatoo S, Lacuey N, Ryvlin P. Principles of stereotactic electroencephalography in epilepsy surgery. J Clin Neurophysiol. 2016;33:478–582.

    Article  PubMed  Google Scholar 

  30. Afif A, Chabardes S, Minotti L, Kahane P, Hoffman D. Safety and usefulness of insular depth electrodes implanted via an oblique approach in patients with epilepsy. Neurosurgery. 2008;62(ONS Suppl 2):471–80.

    Google Scholar 

  31. Francione S, Nobili L, Cardinale F, Citterio A, Galli C, Tassi L. Intra-lesional stereo-EEG activity in Taylor-type focal cortical dysplasia. Epileptic Disord. 2003;5(Suppl 2):105–14.

    Google Scholar 

  32. Alsaadi T, Laxer K, Barbaro N, Marks D, Garcia P. False lateralization by subdural electrodes in two patients with temporal lobe epilepsy. Neurology. 2001;57:532–4.

    Article  CAS  PubMed  Google Scholar 

  33. Sperling M, O’Connor M. Comparison of depth and subdural electrodes in recording temporal lobe seizures. Neurology. 1989;39:1497–504.

    Article  CAS  PubMed  Google Scholar 

  34. Eisenschenk S, Gilmore R, Cibula J, Roper S. Lateralization of temporal lobe foci: depth versus subdural electrodes. Clin Neurophysiol. 2001;112:836–44.

    Article  CAS  PubMed  Google Scholar 

  35. David O, Blauwblomme T, Job A-S, Chabardes S, Hofmann D, Minotti L, Kahane P. Imaging the seizure-onset zone with stereo-electroencephalography. Brain. 2010;134:2898–911.

    Article  Google Scholar 

  36. Cossu M, Cardinale F, Castana L, Nobili L, Sartori L, Lo Russo G. Stereo-EEG in children. Childs Nerv Syst. 2006;22:766–78.

    Article  CAS  PubMed  Google Scholar 

  37. Nowell M, Rodionov R, Zombori G, Sparks R, Winston G, Kingborn J, et al. Utility of 3D multimodality imaging in the implantation of intracranial electrodes in epilepsy. Epilepsia. 2015;56:403–13.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Gonzalez Martinez G, Bulacio J, Alexopoulos A, Jehi L, Bingaman W, Najm I. Stereoelectroencephalography in the “difficult to localize” refractory focal epilepsy: early experiences from a North American epilepsy center. Epilepsia. 2013;54:323–30.

    Article  PubMed  Google Scholar 

  39. Luders H-O, Najm I, Nair D, Widdess-Walsh P, Bingaman W. The epileptogenic zone: general principles. Epileptic Disord. 2006;8(Suppl 2):1–9.

    Google Scholar 

  40. Kahane P, Landre E, Minotti L, Francione S, Ryvlin P. The Bancaud and Talairach view on the epileptogenic zone: a working hypothesis. Epileptic Disord. 2006;8(Suppl 2):16–26.

    Google Scholar 

  41. Wendling F, Chauvel P, Biraben A, Bartolomei F. From intracerebral EEG signals to brain connectivity: identification of epileptogenic networks in partial epilepsy. Front Syst Neurosci. 2010;4:154. https://doi.org/10.3389/fnsys.2010.00154.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Proix T, Bartolomei F, Guye M, Jirsa V. Individual brain structure and modelling predict seizure propagation. Brain. 2017;140:641–54.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Bernhardt B, Hong S, Bernasconi A, Bernasconi N. Imaging structural and functional brain networks in temporal lobe epilepsy. Front Syst Neurosci. 2013;7:624. https://doi.org/10.3389/fnsys.2013.00624.

    Article  Google Scholar 

  44. Bartolomei F, Consadier-Rimele D, McGonigal A, Aubert S, Regis J, Gavaret M, et al. From mesial temporal lobe to perisylvian seizures: a quantified study of temporal lobe seizure networks. Epilepsia. 2010;51:2147–58.

    Article  PubMed  Google Scholar 

  45. Bonini F, McGonigal A, Wendling F, Regis J, Scavarda D, Carron R, et al. Epileptogenic networks in seizures arising from the motor cortex. Epilepsy Res. 2013;106:92–102.

    Article  PubMed  Google Scholar 

  46. Bartolomei F, Gavaret M, Hewett R, Valton L, Aubert S, Regis J, et al. Neural networks underlying parietal lobe seizures: a quantified study from intracerebral recordings. Epilepsy Res. 2011;93:164–76.

    Article  PubMed  Google Scholar 

  47. Bonini F, McGonigal A, Trebuchon A, Gavaret M, Bartolomei F, Giusiano B, Chauvel P. Frontal lobe seizures: from clinical semiology to localization. Epilepsia. 2014;55:264–77.

    Article  PubMed  Google Scholar 

  48. Luders H-O, Lesser R, Dinner D, Morris H, Wyllie E, Godoy J. Localization of cortical function: new information from extraoperative monitoring of patients with epilepsy. Epilepsia. 1988;29:556–65.

    Article  Google Scholar 

  49. Surbeck W, Bouthillier A, Weil A, Crevier L, Carmant L, Lortie A, et al. The combination of subdural and depth electrodes for intracranial EEG investigation of suspected insular (perisylvian) epilepsy. Epilepsia. 2011;52:458–66.

    Article  PubMed  Google Scholar 

  50. Enatsu R, Bulacio J, Najm I, Wyllie E, So N, Nair D, et al. Combining stereoelectroencephalography and subdural electrodes in the diagnosis and treatment of medically intractable epilepsy. J Clin Neurosci. 2014;21:1441–5.

    Article  PubMed  Google Scholar 

  51. Burkholder V, Sulc V, Hoffman M, Cascino G, Britton J, So E, et al. Interictal scalp electroencephalography and intraoperative electrocorticography in magnetic resonance imaging – negative temporal lobe epilepsy. JAMA Neurol. 2014;71:702–9.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Alshafai L, Ochi A, Go C, McCoy B, Hawkins C, Otsubo H, et al. Clinical EEG, MRI, MEG and surgical outcomes of pediatric epilepsy with astrocytic inclusions versus focal cortical dysplasia. Epilepsia. 2014;55:1568–75.

    Article  PubMed  Google Scholar 

  53. Sakuma S, Halliday W, Nomura R, Baba S, Sato Y, Okanari K, et al. Increased subcortical oligodendroglia-like cells in pharmacoresistant focal epilepsy in children correlate with extensive epileptogenic zones. Epilepsia. 2016;57:2031–8.

    Article  CAS  PubMed  Google Scholar 

  54. Barba C, Barbati G, Minotti L, Hoffmann D, Kahane P. Ictal clinical and scalp-EEG findings differentiating temporal lobe epilepsies from temporal plus epilepsies. Brain. 2007;130:1957–67.

    Article  CAS  PubMed  Google Scholar 

  55. Barba C, Rheims S, Minotti L, Guenot M, Hoffmann D, Chabardes S, et al. Temporal plus epilepsy is a major determinant of temporal lobe surgery failures. Brain. 2016;139:444–51.

    Article  PubMed  Google Scholar 

  56. Thom M, Mathern G, Cross H, Bertram E. Medial temporal lobe epilepsy: how do we improve surgical outcome? Ann Neurol. 2010;68:424–34.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Mintzer S, Cendes F, Soss J, Andermann F, Engel J, Dubeau F, et al. Unilateral hippocampal sclerosis with contralateral temporal scalp ictal onset. Epilepsia. 2004;45:792–802.

    Article  PubMed  Google Scholar 

  58. Krsek P, Maton B, Korman B, Pacheco-Jakome E, Jayakar P, Dunoyer C, et al. Different features of histopathological subtypes of pediatric focal cortical dysplasia. Ann Neurol. 2008;63:758–69.

    Article  PubMed  Google Scholar 

  59. Krsek P, Pieper T, Karlmeier A, Hildebrandt M, Kolodziejczyk D, Winkler P, et al. Different presurgical characteristics and seizure outcomes in children with focal cortical dysplasia type I or II. Epilepsia. 2009;50:125–37.

    Article  PubMed  Google Scholar 

  60. Colombo N, Tassi L, Deleo F, Citterio A, Bramerio M, Mai R, et al. Focal cortical dysplasia type IIa and IIb: MRI aspects in 118 cases proven by histopathology. Neuroradiology. 2012;54:1065–77.

    Article  PubMed  Google Scholar 

  61. Hofmann P, Fitt G, Simon Harvey A, Kuzniecky R, Jackson G. Bottom-of-sulcus dysplasia: imaging features. Am J Radiol. 2011;196:881–5.

    Google Scholar 

  62. Sisodiya S, Fauser S, Cross H, Thom M. Focal cortical dysplasia type II: biological features and clinical perspectives. Lancet Neurol. 2009;8:830–43.

    Article  PubMed  Google Scholar 

  63. Chassoux F, Landre E, Mellerio C, Turak B, Mann M, Daumas-Duport C, et al. Type II focal cortical dysplasia: electroclinical phenotype and surgical outcome related to imaging. Epilepsia. 2012;53:349–58.

    Article  PubMed  Google Scholar 

  64. Simon Harvey A, Mandelstam S, Maixner W, Leventer R, Semmelroch I, McGregor D, et al. The surgically remediable syndrome of epilepsy associated with bottom-of-sulcus dysplasia. Neurology. 2015;84:2021–8.

    Article  PubMed  CAS  Google Scholar 

  65. Van Offen M, Van Rijen P, Leiten F. Central lobe epilepsy surgery – (functional) results and how to evaluate them. Epilepsy Res. 2017;130:37–46.

    Article  PubMed  Google Scholar 

  66. Sarkis R, Jehi L, Bingaman W, Najm I. Surgical outcome following resection of rolandic focal cortical dysplasia. Epilepsy Res. 2010;90:240–7.

    Article  PubMed  Google Scholar 

  67. Garganis K, Kokkinos V, Zountsas B. Limited resection of focal cortical dysplasia and associated epileptogenic cortex may lead to a positive surgical outcome. Epileptic Disord. 2011;13:422–9.

    PubMed  Google Scholar 

  68. Pilcher W, Silbergeld D, Berger M, Ojemann G. Intraoperative electrocorticography during tumor resection: impact on seizure outcome in patients with gangliogliomas. J Neurosurg. 1993;78:891–902.

    Article  CAS  PubMed  Google Scholar 

  69. Looma R, Yeh H, Privitera M, Gartner M. Lesionectomy versus electrophysiologically guided resection for temporal lobe tumors manifesting with complex partial seizures. J Neurosurg. 1995;83:231–6.

    Article  Google Scholar 

  70. Mathern G, Babb T, Pretorius J, Melendez M, Levesque M. The pathophysiologic relationships between lesion pathology, intracranial ictal EEG onsets, and hippocampal neuron loss in temporal lobe epilepsy. Epilepsy Res. 1995;21:133–47.

    Article  CAS  PubMed  Google Scholar 

  71. Sugano H, Shimizu H, Sunaga S. Efficacy of intraoperative electrocorticography for assessing seizure outcomes in intractable epilepsy patients with temporal lobe mass lesions. Seizure. 2007;16:120–7.

    Article  PubMed  Google Scholar 

  72. Palmini A, Paglioli E, Silva VD. Developmental tumors and adjacent cortical dysplasia: single, or, dual pathology? Epilepsia. 2013;54(Suppl 9):18–24.

    Article  PubMed  Google Scholar 

  73. Bluemcke I, Thom M, Aronica E, Armstrong D, Vinters H, Palmini A, et al. The clincopathologic spectrum of focal cortical dysplasias: a consensus classification proposed by an ad hoc Task Force of the ILAE Diagnostic Methods Commission. Epilepsia. 2011;52:158–74.

    Article  Google Scholar 

  74. Garganis K, Kokkinos V, Zountsas B. Surgical outcome in neocortical type IIId focal cortical dysplasia with accompanying medial temporal pathology. Epilepsy Behav Case Rep. 2013;1:29–31.

    Article  PubMed  Google Scholar 

  75. Iida K, Otsubo H, Arita K, Andermann F, Olivier A. Cortical resection with electrocorticography for porencephaly-related partial epilepsy. Epilepsia. 2005;46:76–83.

    Article  PubMed  Google Scholar 

  76. Burneo J, Faught A, Knowlton R. Temporal lobectomy in congenital porencephaly associated with hippocampal sclerosis. Arch Neurol. 2003;60:830–4.

    Article  PubMed  Google Scholar 

  77. Luders H-O. Textbook of epilepsy surgery. London: Informa; 2008.

    Book  Google Scholar 

  78. Asano E, Benedek K, Shah A, Juhasz C, Shah J, Chugani D, et al. Is intraoperative electrocorticography reliable in children with intractable neocortical epilepsy? Epilepsia. 2004;45:1091–9.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Asano E, Muzik O, Shah A, Juhasz C, Chugani D, Sood S, et al. Quantitative interictal subdural EEG analyses in children with neocortical epilepsy. Epilepsia. 2003;44:425–34.

    Article  PubMed  Google Scholar 

  80. Greiner H, Horn P, Tenney J, Arya R, Jain S, Holland K, et al. Preresection intraoperative electrocorticography (ECoG) abnormalities predict seizure onset zone and outcome in pediatric epilepsy surgery. Epilepsia. 2016;57:582–9.

    Article  PubMed  Google Scholar 

  81. Marsh E, Peltzer B, Brown M, Wusthoff C, Storm P, Litt B, Porter B. Interictal EEG spikes identify the region of electrographic seizure onsets in some, but not all, pediatric epilepsy patients. Epilepsia. 2010;51:592–601.

    Article  PubMed  Google Scholar 

  82. Bartolomei F, Trebuchon A, Bonini F, Lambert I, Gavaret M, Woodman M, et al. What is the concordance between the seizure onset zone and the irritative zone? A SEEG quantified study. Clin Neurophysiol. 2016;127:1157–62.

    Article  PubMed  Google Scholar 

  83. Mittal S, Barkmeier D, Hua J, Pai D, Fuerst D, Basha M, et al. Intracranial EEG analysis in tumor-related epilepsy: evidence of distant epileptic abnormalities. Clin Neurophysiol. 2016;127:238–44.

    Article  CAS  PubMed  Google Scholar 

  84. Spencer S, Goncharova I, Duckrow R, Novotny E, Zaverri H. Interictal spikes on intracranial recordings: behavior, physiology and implications. Epilepsia. 2008;49:881–1992.

    Article  Google Scholar 

  85. Goncharova I, Spencer S, Duckrow R, Hirsch L, Spencer D, Zaverri H. Intracranially recorded interictal spikes: relation to seizure onset area and effect of medication and time of day. Clin Neurophysiol. 2013;124:2119–28.

    Article  PubMed  Google Scholar 

  86. Pacia S, Ebersole J. Intracranial EEG substrates of scalp ictal patterns from temporal lobe foci. Epilepsia. 1997;38:642–54.

    Article  CAS  PubMed  Google Scholar 

  87. Perry M, Dunoyer C, Dean P, Bhatia S, Bavariya A, Ragheb J, et al. Predictors of seizure freedom after incomplete resection in children. Neurology. 2010;75:1448–53.

    Article  CAS  PubMed  Google Scholar 

  88. Kim D, Lee SK, Chu K, Park K, Lee SY, Lee C, et al. Predictors of surgical outcome and pathologic considerations in focal cortical dysplasia. Neurology. 2009;72:211–6.

    Article  CAS  PubMed  Google Scholar 

  89. Alarcon G, Garcia Seoane JJ, Binnie C, Martin Mignel M, Juler J, Polkey C, et al. Origin and propagation of interictal discharges in the acute electrocorticogram. Implications for pathophysiology and surgical treatment of temporal lobe epilepsy. Brain. 1997;120:2259–2.

    Article  PubMed  Google Scholar 

  90. Chassoux F, Devaux B, Landre E, Turak B, Nataf F, Varlet P, et al. Stereoelectroencephalography in focal cortical dysplasia: a 3D approach to delineating the dysplastic cortex. Brain. 2000;123:1733–51.

    Article  PubMed  Google Scholar 

  91. Singh S, Sandy S, Wiebe S. Ictal onset on intracranial EEG: do we know it when we see it? State of the evidence. Epilepsia. 2015;56:1629–38.

    Article  PubMed  Google Scholar 

  92. Lagarde S, Bonini F, McGonigal A, Chauvel P, Gavaret M, Scavarda D, et al. Seizure onset patterns in focal cortical dysplasia and neurodevelopmental tumors: relationships with surgical prognosis and neuropathologic subtypes. Epilepsia. 2016;77:1426–35.

    Article  Google Scholar 

  93. Jimenez-Jimenez D, Nekkare R, Flores L, Chatzidimou C, Bodi I, Honavar M, et al. Prognostic value of intracranial seizure onset patterns for surgical outcome of the treatment of epilepsy. Clin Neurophysiol. 2015;126:257–67.

    Article  PubMed  Google Scholar 

  94. Perucca P, Dubeau F, Gotman J. Intracranial electroencephalographic seizure onset patterns: effects of underlying pathology. Brain. 2014;137:183–96.

    Article  PubMed  Google Scholar 

  95. Schiller Y, Cascino G, Busacker N, Sharbrough F. Characterization and comparison of local onset and remote propagated electrographic seizures recorded with intracranial electrodes. Epilepsia. 1998;39:380–8.

    Article  CAS  PubMed  Google Scholar 

  96. Spencer S, Spencer D. Entorhinal-hippocampal interactions in medial temporal lobe epilepsy. Epilepsia. 1994;35:721–7.

    Article  CAS  PubMed  Google Scholar 

  97. Bartolomei F, Khalil M, Wendling F, Sontheimer A, Regis J, Ranjeva J-P, et al. Entorhinal cortex involvement in human medial temporal lobe epilepsy: an electrophysiologic and volumetric study. Epilepsia. 2005;46:677–87.

    Article  PubMed  Google Scholar 

  98. Arroyo S, Lesser R, Fisher R, Vining E, Krauss G, Bandeen-Roche K, et al. Clinical and electroencephalographic evidence for sites of origins of seizures with diffuse electrodecremental pattern. Epilepsia. 1994;35:974–87.

    Article  CAS  PubMed  Google Scholar 

  99. Dolezalova I, Brazdil M, Hermanova M, Horakova I, Rektor I, Kuba R. Intracranial EEG seizure onset patterns in unilateral temporal lobe epilepsy and their relationship to other variables. Clin Neurophysiol. 2013;124:1079–88.

    Article  PubMed  Google Scholar 

  100. Jayakar P, Duchowny M, Alvarez L, Resnick T. Intraictal activation in the neocortex: a marker of the epileptogenic region. Epilepsia. 1994;35:489–94.

    Article  CAS  PubMed  Google Scholar 

  101. Zijlmans M, Jiruska P, Zelmann R, Leijten F, Jefferys J, Gotman J. High-frequency oscillations as a new biomarker in epilepsy. Ann Neurol. 2012;71:169–78.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Wu J, Sankar R, Lerner J, Matsumoto J, Vinters H, Mathern G. Removing interictal fast ripples in electrocorticography linked with seizure freedom in children. Neurology. 2010;75:1686–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Jakobs J, Zijlmans M, Zelmann R, Chatillon C-E, Hall J, Olivier A, et al. High-frequency electroencephalographic oscillations correlate with outcome of epilepsy surgery. Ann Neurol. 2010;67:209–20.

    Article  Google Scholar 

  104. Krsek P, Maton B, Jayakar P, Dean P, Korman B, Rey G, et al. Incomplete resection of focal cortical dysplasia is the main predictor of poor surgical outcome. Neurology. 2009;72:217–23.

    Article  CAS  PubMed  Google Scholar 

  105. Holtkamp M, Sharan A, Sperling M. Intracranial EEG in predicting surgical outcome in frontal lobe epilepsy. Epilepsia. 2012;53:1739–45.

    Article  PubMed  Google Scholar 

  106. Raviya A, Mangano F, Horn P, Holland K, Rose D, Glauser T. Adverse events related to extraoperative invasive EEG monitoring with subdural electrodes: a systematic review and meta-analysis. Epilepsia. 2013;54:828–39.

    Article  Google Scholar 

  107. Wellmer J, Von der Groeben F, Klarmann U, Weber C, Elger C, Urbach H, et al. Risks and benefits of invasive surgery work-up with implanted subdural and depth electrodes. Epilepsia. 2012;53:1322–32.

    Article  PubMed  Google Scholar 

  108. Taussig D, Chipaux M, Lebas A, Fohlen M, Bulteau C, Ternier J, et al. Stereo-electroencephalography in 65 children: an effective and safe diagnostic method for presurgical diagnosis independent of age. Epileptic Disord. 2014;26:280–95.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Garganis, K. (2019). Intracranial Electrode Investigations in the Presurgical Evaluation of Drug-Resistant Epilepsy. In: Fountas, K., Kapsalaki, E. (eds) Epilepsy Surgery and Intrinsic Brain Tumor Surgery. Springer, Cham. https://doi.org/10.1007/978-3-319-95918-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95918-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95917-7

  • Online ISBN: 978-3-319-95918-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics