Skip to main content

Assessing Benefits of Using Geogrids in Pavements Founded on Problematic Soils

  • Conference paper
  • First Online:
Book cover Pavement Materials and Associated Geotechnical Aspects of Civil Infrastructures (GeoChina 2018)

Abstract

Geogrids are becoming a popular alternative for soil reinforcement in highway pavement construction to achieve improved performance in regions with soft problematic soils or with a reduction in aggregate layer thickness to reduce construction costs. To examine the potential benefits of geogrids for soil improvement, measurement of permanent deformation using triaxial tests is used in practice. However, soil subgrade improvement in a reinforced pavement system is achieved by lateral distribution of vertical stresses at the reinforcing layer, through the tensile properties of the geogrid material. Therefore, it is desirable to conduct large-scale testing to more accurately monitor the behavior of soil when geogrid is present. The current study seeks to verify the behavior of geogrid reinforced pavement systems through large-scale wheel tests performed with problematic subgrade soils found in North Georgia. The large scale specimen was prepared in a 6 feet long × 6 feet wide × 2 feet deep metal box and consisted of 12 in. of aggregate base overlying 12 in. of subgrade soil. Pressure sensors were installed near the bottom of the aggregate base layer and near the top and bottom of the subgrade layer to monitor stress distributions within the pavement system. This paper presents preliminary results showing vertical stress variations obtained experimentally in aggregate base and subgrade soils under large-scale simulated traffic tire loading. The development of a bench scale system to complement the large scale loading system and allow for microstructure evolution studies is also described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bagshaw, S.A., Herrington, P.R., Kathirgamanathan, P., Cook-Opus International Consultants LTD, S.R.: Research Report 574 Geosynthetics in basecourse stablisation (Rep. No. 574). NZ Transportation Agency, Wellington, NZ (2015)

    Google Scholar 

  • Holtz, R.D., Christopher, B.R., Berg, R.R.: Geosynthetic Design and Construction Guidelines (Rep. No. (Bagshaw et al. 2015)). Federal Highway Administration, Washington D.C. (2008)

    Google Scholar 

  • Tang, X., Abu-Farsakh, M., Hanandeh, S., Chen, Q.: Evaluation of geosynthetics in unpaved roads built over natural soft subgrade using full-scale accelerated pavement testing. Geo-Congress 2014 Technical Papers. (2014). https://doi.org/10.1061/9780784413272.295

  • Tensar International Corporation.: Product Specification Tensar Biaxial Geogrid (2013)

    Google Scholar 

  • Warren, K.A., Christopher, B., Howard, I.L.: Geosynthetic Strain Gage Installation Procedures and and alternative strain measurement methods for roadway applications. Geosynth Int 17(6). Retrieved July 14, 2017. Warren, Christopher, & Howard (2010)

    Google Scholar 

Download references

Acknowledgement

The work presented in this paper is part of a research project (RP 16-11) sponsored by the Georgia Department of Transportation. The contents of this paper reflect the views of the authors, who are solely responsible for the facts and accuracy of the data, opinions, and conclusions presented herein. The contents may not reflect the views of the funding agency or other individuals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sonny Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Williams, S., Wright, J., Sonny Kim, S., Chorzepa, M.G., Durham, S.A. (2019). Assessing Benefits of Using Geogrids in Pavements Founded on Problematic Soils. In: Steyn, W., Holleran, I., Nam, B. (eds) Pavement Materials and Associated Geotechnical Aspects of Civil Infrastructures. GeoChina 2018. Sustainable Civil Infrastructures. Springer, Cham. https://doi.org/10.1007/978-3-319-95759-3_10

Download citation

Publish with us

Policies and ethics