Skip to main content

Environmental Adaptations: Encystment and Cyclomorphosis

  • Chapter
  • First Online:
Water Bears: The Biology of Tardigrades

Part of the book series: Zoological Monographs ((ZM,volume 2))

Abstract

Stressful environmental conditions generally limit animal survival, growth, and reproduction and may induce dormancy in the form of various resting stages. Tardigrades represent one of a few animal phyla in which different forms of dormancy are frequently encountered. One of these forms, cryptobiosis, a quick response to sudden changes in the environment, has gained a great deal of attention, whereas much less is known of the slower emerging form of dormancy, diapause. In this review we present the current knowledge of diapause in tardigrades.

Diapause in tardigrades, represented by encystement and cyclomorphosis, is likely controlled by exogenous stimuli, such as temperature and oxygen tension, and perhaps also by endogenous stimuli. These stimuli initiate and direct successive phases of deep morphological transformations within the individual. Encystment is characterized by tardigrades that lie dormant—in diapause—within retained cuticular coats (exuvia). The ability to form cysts is likely widespread but presently only confirmed for a limited number of species.

In tardigrades, cyclomorphosis was first reported as a characteristic of the marine eutardigrade genus Halobiotus. This phenomenon is characterized by pronounced seasonal morphological changes and in Halobiotus involves stages with an extra protecting cuticle. Cyst formation in moss-dwelling limnic species may also occur as part of a seasonal cyclic event and can thus be viewed as part of a cyclomorphosis. Therefore, whereas diapause generally seems to be an optional response to environmental changes, it may also be an obligate part of the life cycle.

The evolution of encystment and cyclomorphosis finds its starting point in the molting process. Both phenomena represent an adaptation to environmental constraints. Notably, the evolution of diapause is not necessarily an alternative to cryptobiosis, and some tardigrades may enter both forms of dormancy. The simultaneous occurrence of several adaptive strategies within tardigrades has largely increased the resistance of these enigmatic animals toward extreme environmental stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bertolani R (1976) Osservazioni cariologiche su Isohypsibius augusti (Murray, 1907) e I. megalonyx Thulin, 1928 (Tardigrada) e ridescrizione delle due specie. Boll Zool 43:221–234

    Article  Google Scholar 

  • Bertolani R (1982) 15. Tardigradi (Tardigrada). Guide per il riconoscimento delle specie animali delle acque interne Italiane. Consiglio Nazionale Delle Ricerche, Verona, Italy, p 104

    Google Scholar 

  • Biserov VI (1992) A new genus and three new species of tardigrades (Tardigrada: Eutardigrada) from the USSR. Boll Zool 59:95–103

    Article  Google Scholar 

  • Càceres CE (1997) Dormancy in invertebrates. Invertebr Biol 116:371–383

    Article  Google Scholar 

  • Clausen LKB, Andersen KN, Hygum TL, Jørgensen A, Møbjerg N (2014) First record of cysts in the tidal tardigrade Echiniscoides sigismundi. Helgol Mar Res 68(4):531–537. https://doi.org/10.1007/s10152-014-0409-0

    Article  Google Scholar 

  • Crowe JH, Newell IM, Thomson WW (1971) Cuticle formation in the tardigrade, Macrobiotus areolatus Murray. J Microsc 11:121–132

    Google Scholar 

  • Denlinger DL, Tanaka S (1999) Diapause. In: Knobil E, Neill JD (eds) Encyclopedia of Reproduction, vol 1. Academic Press, San Diego, pp 863–872

    Google Scholar 

  • Diaz Cosin DJ, Riuz MP, Ramajo M, Gutiérrez M (2006) Is the aestivation of the earthworm Hormogaster elisae a paradiapause? Invertebr Biol 125:250–255

    Article  Google Scholar 

  • Doyère M (1840) Mémoiresur les Tardigrades. Ann Sci Naturelles, Paris, Ser 2, Zool 14:269–361

    Google Scholar 

  • Eibye-Jacobsen J (1997) Development, ultrastructure and function of the pharynx of Halobiotus crispae Kristensen, 1982 (Eutardigrada). Acta Zool 78:329–347

    Article  Google Scholar 

  • Eibye-Jacobsen J (2001) Are the supportive structures of the tardigrade pharynx homologous throughout the entire group? J Zool Syst Evol Research 39:1–11

    Article  Google Scholar 

  • Guidetti R, Boschini D, Rebecchi L, Bertolani R (2006) Encystment processes and “Matrioshka-like stage” cyst in a moss-dwelling and in a limnic species of eutardigrades (Tardigrada). Hydrobiologia 558:9–21

    Article  Google Scholar 

  • Guidetti R, Boschini D, Altiero T, Bertolani R, Rebecchi L (2008) Diapause in tardigrades: a study of factors involved in encystment. J Exp Biol 211:2296–2302

    Article  Google Scholar 

  • Gullan PJ, Cranston PS (2005) The Insects: an outline of entomology, 3rd edn. Blackwell, Oxford, p 505

    Google Scholar 

  • Guidetti R, Altiero T, Rebecchi L (2011) On dormancy strategies in tardigrades. J Insect Physiol 57(5):567–576

    Article  CAS  Google Scholar 

  • Halberg KA, Persson D, Ramløv H, Westh P, Kristensen RM, Møbjerg N (2009) Cyclomorphosis in Tardigrada: adaptation to environmental constraints. J Exp Biol 212(17):2803–2811

    Article  Google Scholar 

  • Halberg KA, Persson DK, Jørgensen A, Kristensen RM, Møbjerg N (2013a) Ecology and thermal tolerance of the marine tardigrade Halobiotus crispae (Eutardigrada: Isohypsibiidae). Mar Biol Res 9(7):716–724

    Article  Google Scholar 

  • Halberg KA, Larsen KW, Jørgensen A, Ramløv H, Møbjerg N (2013b) Inorganic ion composition in Tardigrada: cryptobionts contain large fraction of unidentified organic solutes. J Exp Biol 216:1235–1243

    Article  CAS  Google Scholar 

  • Hansen JG, Katholm AK (2002) A study of the genus Amphibolus from Disko Island with special attention on the life cycle of Amphibolus nebulosus (Eutardigrada: Eohypsibiidae). In: Hansen JG (ed) Arctic Biology Field Course Quqertarsuaq 2002. Zoological Museum University of Copenhagen, Copenhagen, pp 129–163

    Google Scholar 

  • Heinis F (1910) Systematik und Biologie der Moosebewohnen den Rhizopoden, Rotatorien und Tardigraden usw. Archiv für Hydrobiologie und Plankton kund: 51–115

    Google Scholar 

  • Hygum TL, Fobian D, Kamilari M, Jørgensen A, Schiøtt M, Grosell M, Møbjerg N (2017) Comparative investigation of copper tolerance and identification of putative tolerance related genes in tardigrades. Front Physiol 8:95. https://doi.org/10.3389/fphys.2017.00095

    Article  PubMed  PubMed Central  Google Scholar 

  • Iharos G (1968) The scientific results of the Hungarian soil zoological expeditions to South America: 6. Ein neue Tardigraden-Gattung von mariner Verwandtschaft aus dem chilenischen Altiplano. Opusc Zool 7:357–361

    Google Scholar 

  • Koštál V (2006) Eco-physiological phases of insect diapause. J Insect Physiol 52:113–127

    Article  Google Scholar 

  • Kristensen RM (1982) The first record of cyclomorphosis in Tardigrada based on a new genus and species from Arctic meiobenthos. J Zool Syst Evol 20:249–270

    Article  Google Scholar 

  • Kristensen RM (1987) Generic revision of the Echiniscidae (Heterotardigrada) with a discussion of the origin of the family. In: Biology of tardigrades, pp 261–335

    Google Scholar 

  • Lauterborn R (1906) Demostrationen aus der Fauna ders Oberreheins und seiner Umgebung. Verh Dtsch Zool Ges:265–268

    Google Scholar 

  • Manicardi GC (1989) Two new species of soil moss eutardigrades (Tardigrada) from Canada. Can J Zool 67(9):2282–2285

    Article  Google Scholar 

  • Marcus E (1929) Tardigrada. In: Bronns HG (ed) Klassen und Ordnungen des Tierreichs, vol 5. Akademische Verlagsgesellschaft, Leipzig, Germany, p 608

    Google Scholar 

  • Marcus E (1936) Tardigrada. In: Schulze FE, Kükenthal W, Heider K (eds) Das Tierreich, vol 66. Walter de Gruyter Berlin und Leipzig, Germany, pp 1–340

    Google Scholar 

  • Marley NJ, Wright DE (1996) Amphibolus weglarskae (Dastych), a new addition to the Tardigrada of Iceland with an updated checklist of Icelandic species (Eohypsibiidae, Eutardigrada). Quekett J Microsc 37:541–545

    Google Scholar 

  • Maucci W (1987) A contribution to the knowledge of the North American Tardigrada with emphasis on the fauna of Yellowstone National Park (Wyoming). In: Biology of Tardigrades. Selected Symposia and Monographs UZI, vol 1, pp 187–210

    Google Scholar 

  • McInnes SJ, Pugh PJA (1999) Zonation in Antarctic lake-dwelling benthic meiofauna, with emphasis on the Tardigrada. Zool Anz 238:283–288

    Google Scholar 

  • Møbjerg N, Jørgensen A, Eibye-Jacobsen J, Halberg KA, Persson D, Kristensen RM (2007) New records on cyclomorphosis in the marine eutardigrade Halobiotus crispae (Eutardigrada: Hypsibiidae). J Limnol 66(Suppl 1):132–140

    Article  Google Scholar 

  • Møbjerg N, Halberg KA, Jørgensen A, Persson D, Bjørn M, Ramløv H, Kristensen RM (2011) Survival in extreme environments – on the current knowledge of adaptations in tardigrades. Acta Physiol 202(3):409–420

    Article  Google Scholar 

  • Murray J (1907a) The encystment of Macrobiotus. Fortschr Zool 11:4–11

    Google Scholar 

  • Murray J (1907b) Encystment of Tardigrada. Trans R Soc Edinb 45:837–854

    Article  Google Scholar 

  • Murray J (1907c) Some Tardigrada of the Sikkim Himalaya. J R Microsc Soc 3:269–273

    Article  Google Scholar 

  • Murray J (1907d) XXIV – Scottish Tardigrada, collected by the Lake Survey. Trans R Soc Edinb 45:641–668

    Article  Google Scholar 

  • Nederström P (1919) Die bisjetzt aus Finnland bekannten Tardigraden. Act Soc Fraun Flor Fenn 46(8):1–15

    Google Scholar 

  • Pigòn A, Węglarska B (1953) The respiration of Tardigrada: a study in animal anabiosis. Bull Acad Pol Sci Biol 1:69–72

    Google Scholar 

  • Rahm G (1925) Die Cysten bildung bei den WasserbewohnendenTardigraden. Int Ver Theor Angew Limnol Verh 3:364–371

    Google Scholar 

  • Rahm G (1926) Die Trockenstarre (Anabiose) der Moostierwelt. Biol Cent Bl 46:452–477

    Google Scholar 

  • Rahm G (1927) Tardigrada Biolog d Tiere Deutschland 22:1–56

    Google Scholar 

  • Ramazzotti G (1959) Tardigradi in terreni prativi. Atti Soc Ital Nat, Milano 98:199–210

    Google Scholar 

  • Ramazzotti G, Maucci W (1983) Il Phylum Tardigrada. Terza edizione riveduta e corretta. Mem Isit Ital Idrobiol Dott Marco De Marchi 41:1–1012

    Google Scholar 

  • Rebecchi L, Bertolani R (1994) Maturative pattern of ovary and testis in eutardigrades of freshwater and terrestrial habitats. Invertebr Reprod Dev 26:107–117

    Article  Google Scholar 

  • Richters F (1909) Tardigraden-Studien. Ber Senckenb Naturforsch Ges 40:28–45

    Google Scholar 

  • Richters F, Krumbach T (1926) Tardigrada. Handbuch der Zoologie 3:1–68

    Google Scholar 

  • Rost-Roszkowska M, Poprawa I (2008) Ultrastructure of the midgut epithelium in Dactylobiotus dispar (Tardigrada: Eutardigrada) during encystation. Zool Polon 53(1-4):19–25

    Article  Google Scholar 

  • Schill RO, Huhn F, Köhler HR (2007) The first record of tardigrades (Tardigrada) from the Sinai Peninsula, Egypt. Zool Middle East 42(1):83–88

    Article  Google Scholar 

  • Schultze M (1865) Echiniscus sigismundi, ein Arctiscoide der Nordsee. Arch Mikrosk Anat 1(1):428–436

    Article  Google Scholar 

  • Sommerville RI, Davey KG (2002) Diapause in parasitic nematodes: a review. Can J Zool 80:1817–1840

    Article  Google Scholar 

  • Stark S, Kristensen RM (1999) Tardigrades in the soil of Greenland. Ber Polarforsch 330:44–63

    Google Scholar 

  • Szymańska B (1995) Encystment in the tardigrade Dactylobiotus dispar (Murray, 1907) (Tardigrada: Eutardigrada). Part 1: Observation of leaving animals and structure of cyst. Zool Pol 40:91–102

    Google Scholar 

  • Thulin G (1911) Beiträge zur Kenntnis der Tardigraden fauna Schwedens. Ark Zool 7(16):1–60

    Google Scholar 

  • Thulin G (1928) Über die Phylogenie und das System der Tardigraden. Hereditas 11:207–266

    Article  Google Scholar 

  • Urbanowicz C (1925) Sur la variabilité de Macrobiotus oberhaeuseri. Bull biol Fr Bel 59:124–142

    Google Scholar 

  • Von Reukauf EW (1912) Ein neuer Wasserbär, Macrobiotus ferdinandi (Reukauf). Zool Anz 39:352–353

    Google Scholar 

  • von Wenck V (1914) Entwicklungs geschichtliche Untersuchungen an Tardigraden (Macrobiotus lacustris Duj.). Zool Jahrb Anat 37:465–514

    Google Scholar 

  • Węglarska B (1957) On the encystation in Tardigrada. Zool Pol 8:315–325

    Google Scholar 

  • Węglarska B (1970) Hypsibius (Isohypsibius) smreczynskii spec. nov., a new species of fresh-water tardigrade. Zesz Nauk Uniw Jagiellonsk Pr Zool 16:107–114

    Google Scholar 

  • Wełnicz W, Grohme MA, Kaczmarek L, Schill R, Frohme M (2011) Anhydrobiosis in tardigrades – the last decade. J Insect Physiol 57:577–583

    Article  Google Scholar 

  • Westh P, Kristensen RM (1992) Ice formation in the freeze-tolerant eutardigrades Adorybiotus coronifer and Amphibolos nebulosus studied by differential scanning calorimetry. Polar Biol 12:693–699

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadja Møbjerg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guidetti, R., Møbjerg, N. (2018). Environmental Adaptations: Encystment and Cyclomorphosis. In: Schill, R. (eds) Water Bears: The Biology of Tardigrades. Zoological Monographs, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-319-95702-9_9

Download citation

Publish with us

Policies and ethics