Skip to main content

From Johann August Ephraim Goeze to Ernst Marcus: A Ramble Through the History of Early Tardigrade Research (1773 Until 1929)

  • Chapter
  • First Online:

Part of the book series: Zoological Monographs ((ZM,volume 2))

Abstract

A survey is presented about the early history of tardigrade research spanning the time from 1773, when the first description of a tardigrade was published by Goeze, until 1929, when the most comprehensive monographic approach by E. Marcus, unsurpassed today, was published. Almost from the beginning, two topics dominated “tardigradology”, i.e. phylogeny and systematics as well as cryptobiosis, especially anhydrobiosis, but also other issues (e.g. morphology, development and life history) have followed successfully with ongoing technical and preparatory improvements.

There is a time for everything…

Ecclesiastes 3:1

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Aristotle (Gr. Aristotélēs; 384–322 bc), Greek philosopher, who joined Plato’s Academy in Athens. His writings cover physics, biology, zoology, metaphysics, logic, ethics, aesthetics, poetry, etc. He was the teacher of Alexander the Great (356–323 bc). Aristotle is the earliest natural historian, whose work has survived, among others his writings on natural science such as (translated into Latin) the “Historia animalium” [History of animals], “De generatione animalium” [On the generation of animals] and “De partibus animalium” [On the parts of animals].

  2. 2.

    Gaius Plinius Secundus (Pliny the Elder) (ca. 23–79 ad), Roman naval and army commander, as well as author and naturalist, wrote an encyclopaedia entitled “Naturalis Historiae” [On Natural History] that comprises 37 books, into which he collected much of the knowledge of his time.

  3. 3.

    Commonly assigned to people predominantly concerned with research on tardigrades. However, at all times knowledge of tardigrades has been promoted by people with very different backgrounds and various provenances including “heroes” of natural sciences such as L. Spallanzani, laymen and even people, who never have seen a living tardigrade (especially in modern times, in which sophisticated methods need the experience of specialists). Most researchers mentioned in the present essay were engaged in studying tardigrades only for a certain period of their life, often only during their doctoral dissertation and sometimes only along the way.

  4. 4.

    Composed of the Latin words “tardus” (= slow) and “gradi” (= to walk) and the ancient Greek lógos (= word, study, research). The term Tardigrada comes from Spallanzani’s “il tardigrado” (= sluggard). See footnote 15.

  5. 5.

    Ernst Gustav Gotthelf Marcus (1893–1968), German zoologist, worked closely with his wife Eveline Du Bois-Reymond (1901–1990), granddaughter of the famous physiologist Emil Heinrich Du Bois-Reymond (1818–1896). Due to his Jewish origin, Ernst M. moved in 1936 from Berlin to Brazil and became professor at the University of São Paulo, where he taught and researched for 37 years (until 1963). Eveline M. did all the drawings for the publications of her husband and her own work. Ernst Marcus’s research covered a very wide spectrum of topics and organisms. In his doctoral thesis, he dealt with lamellicorn beetles.

  6. 6.

    Lucien Claude Jules Marie Cuénot (18661951), French biologist, zoologist and geneticist. In 1898 he became chair of zoology in Nancy (France).

  7. 7.

    The term anabiosis (aná, Gr. = upwards; bíos, Gr. = life) was introduced by Preyer (1880, 1891) (see note 89). Keilin (1959) replaced this term with cryptobiosis (kryptós, Gr. = hidden) to describe a specific type of hypobiosis (hypó, Gr. = under), viz. “the state of an organism when it shows no visible signs of life and when its metabolic activity becomes hardly measurable, or comes reversibly to a standstill” (p. 166). He distinguished cryobiosis (krýos, Gr. = ice) induced by cooling, anhydrobiosis (a(n), Gr. = a denial prefix; hýdor, Gr. = water) induced by loss of water, osmobiosis (osmós, Gr. = impulse) induced by high levels of concentration and anoxybiosis (oxýs, Gr. = acidic) induced by absence of oxygen or any combination of these factors. Wright et al. (1992) suggested not to restrict the term cryptobiosis to organisms surviving in an ametabolic state (as Keilin did), but “to define cryptobiosis as a collective term for those quiescent states in which metabolism may be reversibly arrested” (p. 22) and to exclude anoxybiosis and encystation, since both “qualify for quiescence but not cryptobiosis” (p. 23).

  8. 8.

    Giuseppe Ramazzotti (1898–1986), Italian engineer, enthusiastic collector of pipes, began research of tardigrades in 1938 and presented in 1962 a comprehensive review of the literature focussing on the description and determination keys of the known species. The second edition was published in 1972 and the third (with W. Maucci as coauthor) in 1983.

  9. 9.

    Jacob Whitman Bailey (1811–1857), US American naturalist, professor of chemistry, mineralogy and geology at West Point, pioneer in microscopic research in America. He corresponded with Ehrenberg (see footnote 46). Bailey noted in 1850 “The waters in which I detected the species above recorded, also abounded in many other forms of microscopic life; as, Entomostraca, Tardigradi, Anguilluli, &c., &c. Of these I have made no record, as I did not possess sufficient knowledge concerning them.” (p. 44).

  10. 10.

    This phenomenon was known in rotifers observed by the Dutch tradesman, amateur scientist and “father of microbiology” Antonie Philips van Leeuwenhoek (1632–1723) (see Leeuwenhoek 1702) and in nematodes observed by the English biologist and Roman Catholic priest John Turberville Needham (1713–1781) (see Needham 1743).

  11. 11.

    Johann Conrad Eichhorn (1728–1790), German protestant pastor and amateur researcher, who described microorganisms including a tardigrade in the moat and other water bodies near his home city Danzig, now Gdansk (Poland). In 1775 he published the booklet “Beyträge zur Natur-Geschichte der kleinsten Wasser-Thiere” [Contributions to the natural history of the smallest aquatic animals], primarily for lovers of natural history, which was reprinted in 1781.

  12. 12.

    Johann August Ephraim Goeze (1731–1793), protestant pastor in Quedlinburg (Germany). He began his career as a translator of various scientific and philosophical works and became a highly respected and productive zoologist, especially helminthologist, only in the last third of his life. The description of the little water bear is considered as one of the first steps of an interested amateur. http://www.deutsche-biographie.de/ppn116745509.html. For further details see Greven (2015).

  13. 13.

    “In meinen Erholungsstunden erquicke ich mich am liebsten durch mikroskopische Betrachtungen der unermesslichen Reichtümer der Natur im Wasser” [in my hours of rest I preferably refresh myself by the microscopic examination of the boundless wealth of nature in the water] (Goeze 1773, p. 361).

  14. 14.

    Bonaventura Corti (1729–1813), Italian botanist, studied under L. Spallanzani (see Footnote 15), detected the plasma flow and investigated stoneworts (Characeae), jelly fungi (Tremella sp.), rotifers, ciliates and their reviviscence after dehydration (see footnote 20).

  15. 15.

    Lazzaro Spallanzani (1729–1799), Italian polymath, catholic priest and naturalist, studied bodily functions, animal reproduction, echolocation, biogenesis, preservation of food, generation of microbes, etc. Stages in his life were lived in Reggio (professor of logic, metaphysic, Greek), Modena and Pavia (chair of natural history and director of the museum). “No biological phenomenon of any interest ever escaped the attention of Spallanzani (…)” (Keilin 1959, p. 153).

  16. 16.

    Otto Frederick Müller (1730–1784), Danish naturalist (botanist and zoologist), studied later primarily Infusoria (= collective term for minute aquatic organisms including Protozoa and small “invertebrates”); he used for the first time Linné’s binomial classification.

  17. 17.

    Charles Bonnet (1720–1793), Swiss naturalist and philosopher, detected as a young man parthenogenesis in aphids and wanted to name the science of insects “insectology” (s. also Goeze 1773, p. 39).

  18. 18.

    “Seltsam ist dieses Thierchen, weil der ganze Bau seines Körpers ausserordentlich und seltsam ist, und weil es in seiner äusserlichen Gestalt, dem ersten Anblicke nach, die gröste Aehnlichkeit mit einem Bäre im Kleinen hat. Das hat mich auch bewogen, ihm den Namen des kleinen Wasserbärs zu geben”. [Strange is this little creature, because the whole organisation of its body is extraordinary and strange and because of its external appearance. At the first glance, has the closest similarity to a little bear. This also led me to give it the name little water bear.] (Goeze 1773, p. 368).

  19. 19.

    “Sie hatten die größte Aehnlichkeit mit der Lage und Gestalt der sogenannten jungen Kugelthiere, die auf eben die Art in den Alten eingeschlossen sind”. [Concerning overall appearance, they had the greatest similarity with the so-called globular animalcules, which are encased in the old ones in just the same way] (Goeze 1773, pp. 374/375).

  20. 20.

    “Intorno al risorgere, questa proprietà è singolare, ma non è delle sole Tremelle: è gia stata osservata in altri animali, e in altri piante … Anch’io in bagnando della polvere delle grondaje ho veduto tornare a vita non solamente i rotiferi, ma ancora certi animaluzzi, cui ho chiamati i brucolini della polvere delle grondaje, a cagione di qualche somiglianza, che hanno coi bruchi;…” [With regard to reviviscence, this property is not only unique to the jelly fungi (this was considered in detail on the previous pages; translator’s note), but was also observed in other animals and plants already… .I also saw in the dust of the gutter I had moistened, not only reviving rotifers, but also certain creatures that I have called the caterpillars of the gutter dust, because of some similarity they had with caterpillars.] (Corti 1774, p. 97).

  21. 21.

    “Il punto più rilevante si è quello di decidere se le Tremelle, e gli accennati animalucci risorgenti sieno veracemente morti, oppure soltanto in apparenza: poi supposta la morte verace, come accada il loro risorgimento. Il Sig. Abate Spallanzani è di opinione, che il rotifero, e gli altri animaluzzi, i quali seccati in pria ritornano agli usati movimenti per mezzo dell’acqua, sieno rigorosamente morti, e ne soggiugne prove degne di lui, che è quanto dire da bravissimo filosofo naturalista”. [The most relevant point is to decide whether the jelly fungi and the resurging little creatures in question are in fact truly dead, or only seem to be dead: assuming that they are truly dead, how does it happen that they come to life again? Signor Abate Spallanzani thinks that the rotifer as well as other little animals, which have been previously desiccated and are thus definitely dead, obtain their previous ability to move through contact with water. And he adds proofs that are worthy of his reputation as an exceptional natural philosopher.] (Corti 1774, p. 97/98).

  22. 22.

    “I fenomeni del morire, mancando l’acqua, e del risorgere, sosituendone della nuova, succedono nel Tardigrado al modo sesso, che nel Rotifero. Il moto in lui via via si va perdendo, le gambe ſi ritirano, e s’ internano totalmente dentro del corpo, questo rimpicciolisce assaissimo, si secca affatto, ed acquista forma globosa (…). Ed il contrario del fin quì narrato accade vivificando il Tardigrado con acqua novella. E siccome il Rotifero è limitato nelle volte, che può risorgere, così interviene al Tardigrado. Sembra però questo portarsi meglio in ciò, che quantunque l’arena conferisca per gran maniera al suo risorgere, non è però sì strettamente richiesa, come veduto abbiam nel Rotifero.

    Que‘ gradi di calore, che son fatali ai Rotiſerí risorti o da risorgere, lo sono ai Tardigradi, e lo stesso vuol dirsi degli odori, e dei liquori. Il freddo all‘oppoſito, per quantunque aspro che sia, nulla può contra di essi, onde anche in ciò si accordano coi Rotiferi”. (Spallanzani 1776, p. 225/226).

    [The phenomena of its death, from the want of water, and of resurrection when water is supplied, are precisely the same with those of the wheel animal. Motion gradually ceases: the limbs are contracted and drawn entirely within the body, which diminishes very much, is completely dried, and assumes a globular figure, … The reverse succeeds when the sloth is revived by supplying water. As the wheel animal can only revive a certain number of times, so it is with the sloth. And, although sand is necessary for its resurrection, it does not appear as essential as for the wheel animal.

    The degrees of heat, fatal to revived or dead wheel animals, are also fatal to sloths; and the same must be said of odours and liquors. Cold, however intense, does them not harm, and in this they likewise coincide with wheel animals] (Spallanzani 1803, pp. 162–163; translated by J. G. Dalyell).

  23. 23.

    Jean Senebier (1742–1809), Swiss reformed pastor, naturalist and bibliographer, studied vegetable physiology, mainly the influence of light on vegetation. The above quoted statement is to be read in the German translation (from French) “…die, wie das Kugelthier, das Räderthier, das Faulthierchen (le Tardigrade) den Tod leiden und mehrmals wieder auferstehen können”. […which, as the globular animalcule, the wheel animals, the little sloth, meet death and are able to rise again several times] (Senebier 1795, p. 41/42).

  24. 24.

    “Der kleine Bär ist ein schwerfälliges, kaltblütiges und sanftes Thierchen, er lässet die Mitbewohner seines Tropfens mit gleicher Gleichgültigkeit als der Löwe das Hündgen um und an sich fahren”. [The little bear is a clumsy, cold-blooded and gentle animalcule; he let himself be touched by the occupants of his drop with the same indifference as the lion the dog] (Müller 1785, p. 28).

  25. 25.

    “…den Milben, die in die Klasse der Insecten gehören, kömmt es in der Gestalt, der Zahl und dem Gebrauch seiner Füße am nächsten” [Concerning the general appearance, and the number and use of his feet, he is most similar to mites that belong to the class of insects] (Müller 1785, p. 26).

  26. 26.

    The term “Arthropoda” was used for the first time in 1848 by the German physiologist and zoologist Karl (Carl) Theodor Ernst von Siebold (1804–1885) in his “Lehrbuch der Vergleichenden Anatomie der wirbellosen Thiere” [Textbook of Comparative Anatomy of Invertebrates]. Arthropods included the classes Crustacea, Arachnida and Insecta. Tardigrades were considered as arachnids: “(…) die Tiere sind wohl nirgends passender unterzubringen als gerade hier, nur müssen sie obenan gestellt werden, da sie den Uebergang von den Arachniden zu den Annulaten bilden” […the animals may be placed nowhere better than just here, but they must be placed at the top, since it forms the transition from the arachnids to Annulaten more appropriate than just here, but they must be placed first as they form the transition from arachnids to annelids] (von Siebold 1848, p. 506). According to Haeckel (1896, p. 597), the full separation of the annelids and arthropods was “einer der größten Rückschritte der neueren Systematik und hat 30 Jahre hindurch das Verständniss des Articulaten-Stammes in hohem Maasse erschwert; (…)” [was one of the biggest steps backwards of the recent systematics and has extremely complicated the conception of the phylum Articulata for 30 years]. See footnote 130.

  27. 27.

    ácari, Gr. = mite; urséllus is the diminutive of úrsus, Lat. = bear.

  28. 28.

    “Dieses in den allgemeinen Thiergeschichten noch nicht angeführte Thierchen kann mit folgenden Namen bezeichnet werden. Acarus Ursellus corpore rugoso, pedibus conicis” [This animalcule, not yet recorded in general histories of animals, can be described with the following words. Acarus Ursellus with wrinkled body and conical feet] (Müller 1785, p. 30).

  29. 29.

    Carl Linné (Carolus Linnaeus), after his ennoblement in 1761. Carl von Linné (1707–1778), Swedish botanist, professor of medicine and botany at the University of Uppsala (Sweden), was the inventor of the binomial system. The first edition of his “Systema Naturae” was published in 1738. Apparently there were 13 editions, of which Linnaeus wrote only 5 (Usinger 1964).

  30. 30.

    Sir John Graham Daylyell (1775–1851), Scottish antiquary and naturalist, translated Spallanzani’s “Opuscoli” from Italian to English and provided the second translated edition with comments and his own observations (see Spallanzani 1776, 1803).

  31. 31.

    Franz Paula von Schrank (1747–1835), German Jesuit priest, botanist and entomologist and professor at the University Ingolstadt and Landshut (Germany); first director of the botanical garden in Munich (Germany), editor of a multivolume Fauna of Bavaria (1803), one of the most important botanists of Bavaria (http://www.deutsche-biographie.de/pnd11861066X.html).

  32. 32.

    árktos, Gr. = bear.

  33. 33.

    “Es ist völlig falsch, was Senebier nach flüchtigen Beobachtungen behauptet…, dass dieses Thierchen, das Kugelthier, und das Räderthier den Tod öfter leiden, und mehrmals wieder aufleben können. Alle diese Thierchen platzen, wann der Wassertropfen abdunstet, und sind dann unwiederbringlich verloren. Die Naturgeschichte bedarf der angeblichen Wunder nicht, sie hat der wahren genug”. [It is quite incorrect to assert, as Senebier does based on superficial observations... that this animalcule (tardigrade in water bodies, translator’s note), the spherical sphere, and the wheel suffer death more often, and are able to revive many times. All these little creatures burst when the water droplet evaporates, and are then lost forever. The natural history does not require the alleged miracles, it has true ones enough] (Paula von Schrank 1803, p. 195/196).

  34. 34.

    René Joachim Henri Dutrochet (1776–1847), French physician, botanist and physiologist with a broad spectrum of scientific interests, particularly known for his studies on osmosis, respiration, embryology, and the effect of light on plants. The two volumes of the “Memoires…” (Essays…) from 1837 are a collection of his most important biological articles.

  35. 35.

    Henri Marie Ducrotay de Blainville (1777–1850), French zoologist and anatomist at the Faculté des Sciences at the Sorbonne (Paris) and later successor of Georges Cuvier (1769–1832) to the chair for Comparative Anatomy at the Muséum National d’histoire naturelle in Paris.

  36. 36.

    Carl August Sigismund Schultze (1795–1877), German physiologist and anatomist. He was from 1812 onwards professor at the University of Freiburg im Breisgau (Germany) and from 1931 professor at the University of Greifswald (Germany). He wrote four articles about tardigrades (Schultze 1834a, b, 1840, 1861), numerous medical reports and a textbook of comparative anatomy. The two publications from 1834 are of similar content, one of them was issued as Festschrift dedicated to his distinguished contemporary, the physician Christoph Wilhelm Hufeland (1762–1836) on the occasion of the 50th anniversary of his doctorate (Schultze 1834a).

  37. 37.

    Josef Anton Maximilian Perty (1804–1884), German naturalist and natural philosopher, professor at the University of Bern (Switzerland) as of 1834, published among other things about rotifers, Infusoria and insects, mainly Coleoptera. http://www.deutsche-biographie.de/pnd116092386.html?anchor=adb

  38. 38.

    Félix Dujardin (1801–1860), French biologist, professor at the University of Rennes, researched on protozoan and other “invertebrates”, e.g. echinoderms, helminths and cnidarians, and wrote a “Histoire naturelle des zoophytes” (Dujardin 1841).

  39. 39.

    Louis Michel François Doyère (1811–1863), student of H. Milne-Edwards (see footnote 56), French agriculturist, (1850–1852) professor of natural history (1842), 1850–1852 professor of Applied Zoology at the “Institute agronomique de Versailles” (see Maire 1892) and then at the “École centrale des arts et manufactures” (a well-known school of engineering founded in1829). He developed a process for conservation of grain silage. His thesis was published in three parts (Doyère 1840, 1842b, c) and is also available as a separate volume (thesis) (Doyère 1842a).

  40. 40.

    This is in contrast to his later article (Schultze 1861), where he considered the literature very detailed.

  41. 41.

    “Quae quidem descriptio, sicut alia diligentissimi naturae scrutatoris inventa, oblivioni omnino tradita esse videtur; certo a nemine confirmata est”. [Of course, his description as well as other findings of this very diligent student of nature seems to have been entirely forgotten; certainly, nobody has confirmed them.] (Schultze 1834b, p. 5).

  42. 42.

    The genus name refers to the famous book of the German physician Christoph Wilhem Hufeland (1762–1836) entitled “Makrobiotik oder die Kunst das menschliche Leben zu verlängern” [Makrobiotik or the art of prolonging human life] that was reprinted several times and translated in several languages. The title is derived from the Greek word makróbios = long living. In this book Hufeland laid down the principle: “ Je weniger intensiv das Leben eines Geschöpfs und je geringer seine innere und äußere Consumtion, desto dauerhafter ist es” [The less intense life of a creature and its internal and external consumption, the longer its life will last.] (Hufeland 1826, p. 82). Hufeland believed, however, that this rule does not apply to human beings due to their exceedingly great portion of spiritual power.

  43. 43.

    “Macrobiotus simplici structurà ac parvitate Protozoiset Annulatis affinis est. Attamen duriusculo corporis tegumento, in speciem loricae e segmentis composito, pedibus articulatis ungues ferentibus, truncis vasorum sanguiferorum Crustaceorum signa offert. Qua in classe autem nonnisi infimum occupare potest, cum organa respiratoria propria et cor eum deficere videantur.” [Due to its simplicity and smallness Macrobiotus is near the Protozoa and Annulata. However, with the rather tough integument, composed of segments like armour, with jointed legs that bear claws and with trunks supplied with blood they show traits of crustaceans. But in this class, it can hold only the lowest place, as it seems to lack own respiratory organs and a heart.] (Schultze 1834b, p. 5).

  44. 44.

    “Maxime memorabilis est indoles animalis nostri, aqua omni evaporante sese contrahendi (…) omissa ipsa stimulos percipiendi facultate in statum morti simillimum transeundi, solamque vim restitutionis omnium vitae phaenomenorum retinendi. In hoc statu devinctarum virium vitalium (…) Macrobiotus non per breve solum tempus, sed per plures annos durare potest, multo igitur diutius, quam si vita ejus non turbata fuisset.” [Most curious is the ability of our animal to contract (…), and to transform in a state very similar to the death after having lost the ability to be receptive to stimuli, and to retain only the power to restore again all phenomena of life. In this state of bound vitality (…) Macrobiotus is able to persist not only a short time, but many years, i.e. much longer than if its life would not be interrupted.] (Schultze 1834b, p. 4).

  45. 45.

    Christian Gottfried Ehrenberg (1795–1876), a very productive and influential German zoologist, microgeologist and micropalaeontologist, professor of medicine at the University Berlin, friend of Alexander von Humboldt (1769–1859). He published on Hydrozoa, molluscs, coral polyps, rotifers, etc. but later concentrated on microscopic organisms (Protozoa, microalgae and bacteria) and founded the science of micropaleontology. He employed the term “Infusoria” for a wide range both of animal and vegetable life, i.e. he did not yet separate the multicellular organisms from the unicellular ones. One of his most famous monographs is “Die Infusionsthierchen als vollkommene Organismen” [The Infusoria as complete organisms] in 1838. He was one of the strongest opponents of the concept of resuscitation of desiccated “Infusoria”.

  46. 46.

    The first scientists to challenge the theory of spontaneous generation, i.e. formation of living organisms from non-living matter, were Francesco Redi (1626–1697) and Lazzaro Spallanzani (1729–1799; see footnote 15).

  47. 47.

    See footnote 49.

  48. 48.

    échinos, Gr. = hedgehog.

  49. 49.

    A letter by Schultze read aloud at the 15th Meeting of the Society of German Researchers and Physicians in Prague says under point 31 1. “Uiber den Macrobiotus Hufelandi und noch vier andere Species dieser merwürdigen Krusterfamilie. Zwei davon sind mit Fühlhörnern, eine mit zwei, die andere mit vier, und mit Fressspitzen versehen, welche, sowohl die Fühlhörner als Fressspitzen, der Gattung Macrobiotus fehlen. Das mit zwei Fühlhörnern versehene Thierchen dürfte das von Schrank beschriebene Arctiscon tardigradum seyn; auch legt dieses Thier seine Eier (7-11) immer in die abgelegte Haut, was der Macrobiotus niemals thut. Hr. Hofr. Schulze (sic!) hat ein kleines Päckchen Sand, welcher diese Thierchen enthält, eingesendet, den er seit sechs Monaten trocken aufbewahrt hat, worin gewiß einige Exemplare dieses Arctiscon durch Benetzung mit frischem Regenwasser oder destillirtem Wasser werden sich beleben lassen. (…). “[About Macrobiotus Hufelandi and four other species of this strange family of crustaceans. Two of them are equipped with antennae, one with two, the other with four, and with feeding tips (= peribuccal papillae, translator’s note); both, the antennae and feeding tips, are lacking in the genus Macrobiotus. The animalcule with the two antennae is probably Arctiscon tardigradum described by Schrank; in addition, this animalcule lays its eggs (7–12) in the shed skin, which Macrobiotus never does. Hofrat Schulze (sic!) has sent a small parcel with sand containing these animalcules, which he has stored in a dry place for six months; certainly it will be possible to reanimate some specimens of this Arctiscon by wetting <the sand> with rain water or distilled water].

    On the same page under point 32, Mr Purkinje, professor of physiology at the University of Breslau (at that time Germany), informs “(…) dass man die Entstehung des Macrobiotus und ähnlicher Thiere in seiner Gewalt habe. Man braucht nämlich Sand mit Wasser zu benetzen und stehen zu lassen, wo dann nach einigen Tagen solche Thiere sich zeigen” [that the origin of Macrobiotus and similar animals can be mastered. You have only to leave sand moistened with water, where then such animals emerge after a few days] (Sternberg and von Kromholz 1838, p. 187).

  50. 50.

    Except for Macrobiotus hufelandii, none of these names, neither genus nor epithet, survived due to the impossibility to identify the species in question.

  51. 51.

    xénos, Gr. = strange; morphé, Gr. = form, shape

  52. 52.

    Friedrich Siegmund Voigt (1781–1850), professor of medicine and botany and director of the Botanic Garden at the University Jena (Germany), translated the second edition of “Le règne animal… .” by the famous French naturalist Georges Cuvier (1769–1832) into German and extended the text considerably (Voigt 1843). Voigt classified tardigrades as the first order of the Infusoria, in which also Rotatoria, Polygastrica (Infusoria sensu Ehrenberg) and Spermatozoa were included.

  53. 53.

    The term was adopted from physics (e.g. latent heat) and introduced in 1834 for physiology by the German physician and natural philosopher Carl Gustav Carus (1789–1869) (see Carus 1834).

  54. 54.

    systolé, Gr. = contraction.

  55. 55.

    emýs, Gr. = turtle. In an annex of his thesis, Doyére noted the similarity of Schultze’s Ech. bellermanni with his Em. testudo and accepted the priority of the term Echiniscus (see Doyére 1842c).

  56. 56.

    Dedicated to Henri Milne-Edwards (1800–1885), eminent French zoologist, at that time professor of entomology at the Muséum National d’Histoire Naturelle and at the faculty of Sciences at the Sorbonne in Paris and later chair of zoology

  57. 57.

    asphyxía, Gr. = stopping of the pulse. “L’asphyxie est le moyen qui réussit le mieux, celui qui donne les plus beaux résultats. Je prends des Tardigrades vivans, je les place dans un tube en verre plein d’eau préalbablement privée d’air par l’ebulliton, et au-dessus de laquelle j’ai le soin de mettre une couche d’huile pour la séparer de l’atmosphère. Après vingt-quatre heures l’engourdissement est complet, il est plus complet et plus durable après deux, trois, quatre jours; ce n’est qu’après cinq à six jours que les Tardigrades perdent la faculté de revenir à la vie.” [Asphyxia is the most successful way, one that gives the best results. I take living Tardigrades, I place them in a glass tube filled with water, deoxygenated beforehand by boiling, and cover it carefully with a layer of oil to separate it from the atmosphere. After twenty-four hours, numbness is complete, it is even more complete and lasting after two, three or four days; it was only after five or six days that Tardigrades lose their ability to come back to life.] (Doyère 1840, p. 333). This technique was simplified later and was the method of choice for decades to study tardigrades (e.g. Greeff 1865; Plate 1889; Basse 1905).

  58. 58.

    “J’eus d’abord quelque peine à reconnaître l’animal, dans la petite masse, inert, en apparence granuleuse et amorphe que je rencontrais parfois à l’interieure de certains peaux qui me semblait abandonnés. C’était le Tardigrade lui-méme. Déjà dépouillé, mais non encore sorti de sa dépouille.” [Initially I had some difficulty to recognize the animal, in the small mass, inert, granular and amorphous in appearance, which I sometimes found within a skin. It was the tardigrade itself. I thought it had already been shed. Already shed, but not yet outside of its skin.] (Doyère 1840, p. 308).

  59. 59.

    Félix-Archimède Pouchet (1800–1872, French physician and naturalist, founder of Rouen Museum of Natural History (1828), from 1838 professor at the School of Medicine at Rouen, a leading proponent of spontaneous generation of life from non-living materials.

  60. 60.

    Société de biologie, a learned society founded in Paris (France) in 1848. The members of the society held regular meetings; proceedings were published in the scientific journal “Comptes rendus de la Société de Biologie” first issued in 1849.

  61. 61.

    Pierre Paul Broca (1824–1880), French physician and anthropologist, known for his research on a region of the frontal lobe involved with language that was named after him (= Broca’s area).

  62. 62.

    The key conclusion of the commission was: “La résistance des tardigrades et des rotifères aux températures élevées paraît s’accroitre d’autant plus qu’ils ont été plus complétement desséchés d’avance. Les rotifères peuvent se ranimer après avoir séjourné quatre-vingt-deux jours dans le vide sec et subi imdiatement aprés une température de 100° pendant trente minutes. Par conséquent, des animaux desséchés successivement à froid dans le vide sec, puis à 100° sous a pression atmosphérique, c’est-à-dire amenés au degré de desiccation le plus complet qu’on puisse réaliser dans ces conditions et dans l’état actuel el a science, peuvent conserver encore la propriété de se ranimer au contact de l’eau.” [The resistance of tardigrades and rotifers to high temperature appears to increase, the more they had been completely dehydrated before. Rotifers can be become alive again after having stayed for eighty-two days in a dry vacuum and immediately thereafter being exposed to a temperature of 100° for thirty minutes. Therefore, animals which had been dried first in a cold dry vacuum and then at 100° under atmospheric pressure, i.e. brought to the most complete degree of desiccation we can achieve under these conditions and in the present state of science, still retain the ability to revive in contact with water] (Broca 1860, p. 139).

  63. 63.

    In this context, a short note from 1858 by the French physician Casimir Davaine (1812–1882), co-discoverer of Bacillus anthracis, should be mentioned. He showed that, in contrast to moss-dwelling tardigrades and rotifers, fully aquatic species of both are not able to withstand dehydration (Davaine 1858). Later Marcus (1928a, 1929b) thought that such differences depend to a large extent on the habitat rather than on the general inability of the species in question to tolerate desiccation. He further suggested to leave up the distinction between freshwater and terrestrial tardigrades in favour of strongly and less strongly hygrophilous (hygrós, Gr. = wet; phílos, Gr. = friend, loving) species and rejected the term xerophilous (xéros, Gr. = trocken) as all tardigrades can only be active in a medium containing humidity.

  64. 64.

    Milnesium was considered over decades as a monospecific genus with a single cosmopolitan species, which currently, however, contains more than 30 species. No single tardigrade species described by Ehrenberg has been revalidated so far. However, more recently Milnesium alpigenum appears to be revitalized using animals from a parthenogenetic lab strain collected near Tübingen (Germany) (Morek et al. 2016), but Ehrenberg collected his material in the Mone Rosa massif in the Pennine Alps at approx. 3600 m above sea level (Ehrenberg 1853b). According to Ehrenberg, Doyère’s M. tardigradum and his M. alpigenum differ in the claw configuration and also in the number of peribuccal papilla, i.e. three in the former and six in the latter. However, also M. tardigradum has six papilla as clearly noted by the author: “bouche entourèe de six petits palpes” (Doyère 1840, p. 283).

  65. 65.

    “Un des auditeurs les plus zélés de la Faculté des sciences, M. Boulengey, qui m’a souvent aidé dans la recherche des animaux microscopiques, m’apporta, au mois d’août 1849, un petit animal qu’il avait vu ramper à la paroi de ses vases d’eau de mer, et qu’il avait bien reconnu pour un Tardigrade, malgré sa petitesse extrême. En effet, cette Lydella, qui, à la vérité, n’était peut-être pas adulte, n’a souvent qu’un vingtième de millimètre, et rarement son corps dépasse un dixième de millimètre (…)” [One of the most zealous auditors of the Faculty of Science, Mr. Boulengey, who often helped me in the search for microscopic animals, brought me in August 1849 a small animal that he saw crawling on the wall of its sea water vessels, and that he had recognized as tardigrade despite its extreme smallness. Indeed, this Lydella, which, to be true, probably was not an adult, often measures only a twentieth of a millimeter, and its body rarely exceeds one tenth of a millimeter (...)] (Dujardin 1851, p. 164).

  66. 66.

    Lydella was later renamed in Microlyda by Hay (1907), because Lydella is a genus of flies in the family Tachinidae since 1830 up to this day.

  67. 67.

    “En résume, il me semble que les charactères de cette nouvelle espèce de Tardigrade, malgré son apparente ressemblance avec certains animaux articulés, concourent avec ce que nous savons des autres espèces, pour montrer l’indépendance du type auquel elles appartiennent. Est-ce au groupe des Articulés, est-ce au groupe des Vers qu’on doit les rattacher désormais? La question, je crois, est au moins indécise, quoique je penche encore pour cette dernière opinion.” [In summary, it seems that the characteristics of this new species of Tardigrade, despite its apparent resemblance to some articulated animals, concur with what we know from other species, to show the independence of the type to which they belong. Is it the articulated group, is it the group of worms to which we should link them from now on? The question, I think, is at least undecided, though I still incline towards the latter view.] (Dujardin 1851, p. 166).

  68. 68.

    lacus, Lat. = water (body); makrós, Gr. = long, big; ónyx, Gr. = claw.

  69. 69.

    Max Johann Sigismund Schultze (1825–1874), German anatomist, professor at Halle (Germany) and Bonn (Germany), dedicated the new species to his father C.A.S. Schultze (see footnote 36). M. Schultze was known for his work on cell theory. He published also about Turbellaria and Foraminifera.

  70. 70.

    tetra, Gr. = four; kéntron, Gr. = thorn, sting.

  71. 71.

    Parasitism has been only assumed by Cuénot, but was (indirectly) shown not earlier than 1980 (Kristensen 1980).

  72. 72.

    Joseph Kaufmann, studied at the University of Zurich (Switzerland), further details not identified.

  73. 73.

    Interestingly, a textbook of zoology previously issued contains the note: “Bei Macrobiotus Hufelandii beobachtete ich deutlich, dass die von der abgeworfenen Haut umhüllten Eier einen totalen Furchungsprocess durchmachten”. [I clearly saw in Macrobiotus Hufelandii that the eggs covered by the shed skin undergo a total cleavage.] (von Siebold 1848, p. 552 note 2) (see Footnote 26).

  74. 74.

    Later Marcus (1928a) tried to demonstrate chitin in the tardigrade cuticle with zinc iodine chloride that at that time was considered to be specific for the detection of chitin (today it is used for the rapid detection of cellulose), but he failed and suggested the cuticle might consist of a swellable albumin-like substance with high alkali resistance. Cuénot (1924) only says that the cuticle seems to be chitinous; he relies on its resistance against caustic potash but also mentions Marcus’s view. Clear evidence that the tardigrade cuticle contains chitin was shown not until 1972, when Baccetti and Rosati (1971) extracted ultrathin sections with chitinase.

  75. 75.

    Pycnogonida (pyknós Gr, = thick, densely packed; goné, Gr. =generation, progeny) or Pantopoda (pántos, Gr. = complete; pus, gen. podós, Gr. = foot), i.e. sea spiders are arthropods assigned to the Arachnoidea at that time (see Claus 1887); today a place outside the Arachnomorpha is also discussed.

  76. 76.

    Ludwig Bartholomäus Graff de Pancsova (18511924) Austro-Hungarian zoologist, professor at the “Königlich Bayerische Forstlehranstalt Aschaffenburg” [Royal Bavarian Academy of Forestry at Aschaffenburg] and later professor of Zoology at the University Graz (Austria), especially known for his studies on turbellarian and as an expert on myzosotmids.

  77. 77.

    Myzostomida (mýzein, Gr. = suckle; stoma, Gr. = mouth), parasitic marine “worms” considered as basal lineage of Bilateria. Affinities with Annelida and Platyhelminthes.

  78. 78.

    Stelechopoda (stélechos Gr. = stump; poús Gr. = foot).

  79. 79.

    Linguatulida (linguátula, Lat. = small tongue) or Pentastomida (penté. Gr. = five; stóma, Gr. = mouth), tongue worms are Ecdysozoa probably related to crustaceans.

  80. 80.

    Ernst Heinrich Philipp August Haeckel (1834–1919), extremely productive German zoologist, philosopher, physician and artist, and professor of Comparative Anatomy at the University of Jena (Germany) and impressed by Darwin’s theory; among other things known for his recapitulation theory (ontogeny recapitulates phylogeny) and the beautifully illustrated book “Kunstformen der Natur” [Art forms of Nature] from 1904.

  81. 81.

    Richard Greeff (1829–1892), German physician, switched to zoology and became professor of zoology at the University of Marburg (Germany). He published among other things about rhizopods, annelids and echinoderms (http://www.deutsche-biographie.de/pnd116828412.html).

  82. 82.

    Ludwig Hermann Plate (1862–1937), German zoologist and social Darwinist, professor at the Universities in Berlin and Jena; published on genetics and descent theory, student of Ernst Haeckel (1834–1919, see footnote 76); wrote his dissertation on rotifers (http://www.deutsche-biographie.de/pnd117683574.html).

  83. 83.

    Named after the Italian biologist and physician Marcello Malpighi (1628–1694), professor of Physics at the University of Pisa, and commonly used for insect excretory organs.

  84. 84.

    He concluded: “Die Bärthierchen sind die niedrigsten von allen bis jetzt bekannten luftathmenden Arthropoden und sind an die Spitze der Tracheaten, noch vor den Onychophoren zu setzen (…) Sie sind diejenige Thiergruppe, welche den Uebergang von den Gliederwürmern zu den luftathmenden Arthropoden am reinsten zum Ausdruck bringt und am deutlichsten erkennen lässt.” [The bear-animalcules are the most primitive of all air breathing arthropods that have been identified to date and have to be set at the beginning of the Tracheata, even prior to the Onychophora…they are the animal group demonstrating most clearly the transition from annelids to air-breathing arthropods] (Plate 1889, p. 545/546).

  85. 85.

    “Es giebt meiner Ansicht nach keine Abtheilung der Würmer oder Arthropoden, an die sich die Tardigraden direct anschließen lassen. Sie bilden eine isolirt dastehende kleine Gruppe, die sich schon ausserordentlich früh vom Stammbaum der Tracheaten abgespalten hat und daher der Urform der landbewohnenden Gliederfüssler näher steht als irgend eine andere Abtheilung”. [In my opinion there is no group of worms or arthropods, to which tardigrades can be connected directly. They represent a small isolated group, which has split from the Tracheata-tree quite early; therefore they are much closer to the prototype of terrestrial arthropods than any other group] (Plate 1889, p. 547).

  86. 86.

    Julius Thomas von Kennel (1854–1939) German zoologist and entomologist (lepidopterology, especially Microlepidoptera), professor at the University Tartu (Estonia) until 1893 Kaiserliche Universität Dorpat.

  87. 87.

    von Kennel did not use the term “paedogenetic” or more neutral “paedomorphic” (pays, Gr. = child; génesis, G. = generation), i.e. the phylogenetic change that involves retention of juvenile characters by the adult, but he wrote that tardigrades might be “Arthropoden auf dem Larvenstadium, ohne Kopf, mit einem in der Segmentzahl reducirten Rumpf, der einige (secundäre) Fussstummel trägt”. [Arthropods in the larval stage, without a head and with a body reduced in the number of body segments, which has some (secondary) stubs of feet] (von Kennel 1891, p. 510).

  88. 88.

    Tracheata (trachýs, Gr. = rough), at that time a group within the arthropods characterized by a tracheal systems, which included myriapods and insects (see Haeckel 1896).

  89. 89.

    William Thierry Preyer (1841–1897), British physiologist, first full professor at the University of Jena (Germany), propagated people-oriented presentations of science (http://www.deutsche-biographie.de/pnd118596411.html?anchor=adb).

  90. 90.

    “Alle Organismen sind entweder lebend oder leblos. Die nicht lebenden, unlebendigen oder leblosen sind aber keineswegs todt, vielmehr sind sie entweder l e b l o s, aber lebensfähig – a n a b i o t i s c h d.h. wieder belebungsfähig, scheintodt im engeren Sinne – oder sie sind l e b l o s und l e b e n s u n fä h i g, wofür der Ausdruck todt gebräuchlich ist” [All organisms are either living or inanimate. However, the non-living, inanimate or lifeless ones are not dead, rather they are either inanimate, but viable – a n a b i o t i c, i.e. able to be revived, seemingly dead, revival capable, sham dead in the narrower sense – or they are lifeless and unlivable, for which the term ‘dead’ is used] (Preyer 1880, p. 28).

  91. 91.

    To be more precise, he said: “Die organische Maschine stirbt also nicht jedesmal, wenn sie vollkommen still steht, so wenig wie die Uhr jedesmal zerbricht, wenn das Pendel nicht mehr schwingt” [Thus, the organic machine does not die each time it stands still completely, similar to the clock that does not break each time the pendulum does swing no longer] (Preyer 1891, p. 5).

  92. 92.

    Raphael Baron Slidell von Erlanger (18651897), German zoologist, associate professor at the University of Heidelberg, research in developmental biology. As son of a banking family, he was able to acquire a laboratory from its own resources.

  93. 93.

    Embryonic gut; arché Gr. = beginning; énteron Gr. = gut.

  94. 94.

    Johann Adam Otto Bütschli (1848–1920), German zoologist, professor at the University Heidelberg, studied insect development, nematodes and Protozoa (http://www.deutsche-biographie.de/pnd117144932.html).

  95. 95.

    Denis Lance (??–??). I did not find further bibliographic information. Lance dedicated his dissertation to “M. Milne-Edwards”, i.e. Alphonse Milne-Edwards (1835–1900), who became in 1891 director of the Muséum National d’Histoire Naturelle in Paris. A. Milne-Edwards was the son of Henri Milne-Edwards, who 50 years before accepted Doyère’s dissertation (see footnote 39).

  96. 96.

    This term, used by Lance, was introduced by Alfred Giard (1846–1908), French zoologist, professor at the faculty of sciences in Paris, to describe a variety of “hypobiotic” processes caused by loss of water including dormancy (see also Keilin 1959). He wrote “La déshydratation progressive n’augmente pas les échanges respiratoires; elle les diminue et diminue en même temps tous les phénomènes vitaux. Elle peut même aboutir à un état d’anhydrobiose ou vie latente par desséchement, dont le sommeil estival de nombreux animaux n’est qu’une variété remarquable” [The progressive dehydration does not increase the respiratory exchange; it reduces and diminishes in the same time all vital phenomena. It may even result in a state of anhydrobiosis or latent life by drying out, the summer sleep of many animals is a remarkable variety] (Giard 1894, p. 498).

  97. 97.

    “Que ce soient des Arthropodes excessivement inférieurs cela ne fait aucun doute. En effet ils se distinguent à peine des Vers, en particulier des Annelides. Par leur cuticule à peine segmentée; par la disposition de leurs muscles longitudinaux en trois groupes (dorsaux, latéraux, ventraux) par la présence de membres à crochets, rappelant les parapodes; par l’absence de pièces buccales constituées par des membres transformés, ils se rapprochent absolument des Vers”. [There is no doubt that they are extremely lower arthropods. In fact, they can hardly be distinguished from worms, especially from annelids. Be it their hardly segmented cuticle; the arrangement of their longitudinal muscles into three groups (dorsal, lateral, ventral); the presence of limbs with hooks, reminiscent of parapods; or the absence of mouthparts formed from modified limbs, it definitely places them close to worms ] (Lance 1896, p. 199).

  98. 98.

    perípatos, Gr. = walk, walking.

  99. 99.

    Ferdinand Richters (1849–1914), German zoologist, curator of Crustacea at the Naturmuseum Senckenberg, Frankfurt am Main. In 1873/1874 he worked as an assistant in the Zoological Institute at Göttingen; later he found an employment at the Senckenberg Institute. In 1886 he was named vice-director of the Senckenberg Gesellschaft für Naturforschung, where, 3 years later, he was appointed first director. In his days he was one the most productive tardigradologists.

  100. 100.

    James Murray (1865–1914), British biologist and explorer. Murray undertook both biological and bathymetric surveys, contributed to taxonomy and distribution of tardigrades and bdelloid rotifers; many of these creatures he described for the first time. In 1913, he joined a Canadian scientific expedition to the Arctic. When the ship became trapped in the ice, Murray mutinied against the captain and left the ship with three others; they were never heard of again.

  101. 101.

    hals, Gr. = salt; stenós, Gr. = narrow; stóma, Gr. = mouth; batíllum, Lat. = shovel; mirus, Lat. = strange; bathýs, Gr. = deep.

  102. 102.

    A multivolume manual founded in the 1920s by Willy Kükenthal (1861–1922), professor of Zoology and comparative anatomy at the University Breslau and Berlin and continued by Thilo Krumbach (1874–1949) from Breslau, who headed for some years the Zoological Station in Rovigno (Istria). The series, a treatment of the complete animal kingdom in eight volumes, started in 1925 and was restructured at the beginning in 2010 offered additionally as a database (Zoology Online), which can be easily searched and rapidly updated.

  103. 103.

    “Auf alle Fälle, meine ich, haben wir volle Veranlassung, die Tardigraden nicht mehr zu den Arthropoden zu zählen, sondern sie, unter Anerkennung gewisser Anklänge an die Nematoden, die als Reminiszenzen an gemeinsame Stammformen gelten dürfen, als nächste Verwandte der Anneliden aufzufassen” [In any case, I think, we have every reason, not to include tardigrades in the arthropods, but to consider them—in recognition of a certain reminiscence of nematodes—as the nearest relatives of annelids] (Richters 1909b, S. 44).

  104. 104.

    prótos, Gr. = first.

  105. 105.

    eu, Gr. = good, right.

  106. 106.

    Robert Lauterborn (1869–1952), German zoologist (hydrobiology), professor at the University Heidelberg, TH Karslruhe and Freiburg (Germany), studied among others things ciliates, rotifers, plankton and water quality. http://www.deutsche-biographie.de/pnd116770716.html

  107. 107.

    Albert Basse (no further information available), doctoral student of Eugen Korschelt (1858–1946), professor of zoology and comparative Anatomy at the University of Marburg (Germany).

  108. 108.

    J. Henneke (no further information available), doctoral student of E. Korschelt at the University of Marburg (Germany) (see Footnote 107).

  109. 109.

    Fritz Heinis (1883–1979), Swiss biologist (botanist, bryologist), instructor at a secondary school, published several articles about tardigrades including his dissertation “Systematics and biology of moss-inhabiting rhizopods, rotifers and tardigrades in the environs of Basel”, etc. (Heinis 1910), which was supervised by Friedrich Zschokke (1860–1936), professor of Zoology and Comparative Anatomy at the University Basel (Switzerland), known for his work in the field of hydrobiology and zoogeography.

  110. 110.

    Edmund Reukauf (??–??), teacher at a citizen school in Weimar (Germany), botanist, published among others popular books for microscopists, e.g. in 1911 “Die mikroskopische Kleinwelt unserer Gewässer” [The microscopic small world of our water bodies]. http://zs.thulb.uni-jena.de/servlets/MCRFileNodeServlet/jportal_derivate_00170534/AB-Weimar_1920_bitunal_k.pdf

  111. 111.

    Wanda Clara Anna von Wenk (1883–??), secondary school teacher, mainly in Berlin (Germany). Her dissertation published 1914 was initiated by Waldemar Schleip (1879–1948), professor at the University of Freiburg (Germany). http://bbf.dipf.de/kataloge/archivdatenbank/hans.pl?t_tunnel=idn&idn=p1611

  112. 112.

    Hermann Hans Joseph Ferdinand Baumann (1889–1970), German pedagogue and school reformer, student of E. Korschelt (see footnote 107), worked in several educational institutions, from 1930 as a lecturer in biology and chemistry at the pedagogical academy Kassel (Germany) and later as a teacher in a secondary school (see Hesse 1995). In his last years he worked as a volunteer in the “Übersee-Museum” in Bremen (Germany).

  113. 113.

    Erich Christian Wilhelm Martini (18801960), German zoologist and physician, founder of the medical entomology in Germany. Besides other places, he worked at the Bernhard Nocht Institute for Tropical Medicine in Hamburg. He introduced the term eutely to designate this concept of constancy in number and arrangement of histological units.

  114. 114.

    “Nach allem ist es nicht mehr möglich, die Eintrocknungsfähigkeit der Tardigraden als ein Beispiel für die Unterbrechung der Kontinuität des Lebensvorganges und für Stoffwechselstillstand, kurz für das ‘latente Leben’ im Sinn Preyer’s (…) anzuführen. Da in den getrockneten Körpern Wasser nachzuweisen ist, muß auch ein Stoffwechsel stattfinden, selbst wenn er noch nicht unmittelbar nachgewiesen werden kann, was bei der Kleinheit der Objekte auf Schwierigkeiten stößt”. [After all, it is no longer possible to use the ability of tardigrades to dry out as an example for the interruption of the continuity of the life process and for metabolic arrest, in short for “latent life” in the sense of Preyer (...). Because there is water in the dried bodies, also metabolism must take, even though it cannot be detected directly, which will meet difficulties because of the smallness of the objects.] (Baumann 1922, p. 555).

  115. 115.

    Much later, lipid extrusions were described in anhyrobiotic eutardigrades, which were assumed to be extruded from dermal glands via putative (which have not yet been proven) pore canals in the cuticle to reduce the transpiration rate (see the figure in Wright 1988, 2001; Wright et al. 1992). To my knowledge, there has not been sufficient evidence either for dermal glands or pore canals in the eutardigrade cuticle to date.

  116. 116.

    Gilbert Rahm (1885–1954), German priest (Benedictine) and zoologist, obtained the doctorate at Bonn University in 1920 with the thesis “Biologische und physiologische Beiträge zur Kenntnis der Moosfauna” (supervisor Richard Hesse (1868–1944; published 1923) and qualified as a lecturer in 1925 with the thesis entitled “Beitrag zur Kenntnis der Moostierwelt der preussischen Rheinlande” (published 1925) at the University Freiburg (Switzerland). From 1929 onwards he was professor of general biology at the Catholic University Santiago (Chile), moved in 1929 to the USA, where he was engaged in studying trichinosis and covered pastoral functions (http://www.kreis-ahrweiler.de/kvar/VT/hjb1990/hjb1990.20.htm; Grothman et al. 2017).

  117. 117.

    A well-introduced series founded 1925 by Friedrich Dahl (1856–1929), curator of arachnids at the Museum für Naturkunde in Berlin. The full title of the series is “Die Tierwelt Deutschlands und der angrenzenden Meeresteile nach ihren Merkmalen und nach ihrer Lebensweise,” [The fauna of Germany and adjacent maritime zones according to their characteristics and living].

  118. 118.

    Ernst Marcus repeatedly acknowledged the collaboration with his wife and her contributions. Already in the first article he wrote “Im Folgenden seien die Ergebnisse der von meiner Frau Eveline und mir gemeinsam angestellten Untersuchungen an zwei marinen Formen mitgeteilt,…” [In the following the results of the investigations on two marine species carried out together by my wife Eveline and me will be communicated…] (Marcus 1927, p. 487; see also the dedication in Marcus 1928c).

  119. 119.

    “…da die aus dem Ei gekrochenen und ihre ersten Häutungen durchmachenden Tiere sich von den ausgewachsenen lediglich durch geringe Größe, geringere Krallen- und manchmal Dornenzahl und Fehlen der Geschlechtsorgane unterscheiden, nie aber provisorische oder Larvenorgane besitzen.” [because the hatched specimens and those after the first moults differ from the adults only in their small size, the smaller number of claws and occasionally of spines, an in the absence of reproductive organs, however, never they have provisional or larval organs] (Marcus 1927, p. 488/489).

  120. 120.

    árthron, Gr. = joint; poús, gen. podós, Gr. = Fuß.

  121. 121.

    pará, Gr. = next to; pseudés, Gr. = false, mendacious.

  122. 122.

    héteros, Gr. = different.

  123. 123.

    Adolf Remane (1898–1976), German zoologist, professor at the Universities of Kiel and Halle (Germany), explored the microfauna of marine sand and refined the homology theorem in 1952 (http://www.deutsche-biographie.de/pnd11874447X.html).

  124. 124.

    Gustav Thulin (1889–1945), Swedish zoologist, student of Sigurd Wallengren (1864–1938) and professor of Zoology the University Lund (Sweden). Thulin worked in the 1920s and 1930s in the Department of Zoology in Lund and from 1936 at the Natural History Museum in Gothenburg (Sweden). Here he studied tardigrades but also other benthic animals (www.tmbl.gu.se/libdb/taxon/.../petymol.tu.html).

  125. 125.

    brýon, Gr. = Moos; délphax, Gr. = piglet; hypér, Gr. = over.

  126. 126.

    pyle, Gr. = door; micropyle = small hole in the egg chorion for the entry of the spermatozoon.

  127. 127.

    The more recent studies using modern techniques are not free from ambiguity. J. Eibye-Jacobsen (1997), who studied Halobiotus crispae (Eutardigrada) and Echiniscoides sigismundi (Heterotardigrada) using TEM, believed she had seen traits of spiral cleavage, and she very much doubted the existence of enterocoely in tardigrades. Heijnol and Schnabel (2005a, b) studying Thulinia stephaniae (Eutardigrada) and Echiniscoides sigismundi did not detect a stereotyped cleavage pattern, but an indeterminate irregular cleavage pattern and rejected enterocoely as well, but Gabriel et al. (2007) emphasized differences in the mode of gastrulation and germ layer formation and found that the embryos of Hypsibius dujardini (Eutardigrada) have a stereotyped cleavage pattern with asymmetric cell divisions and that the mesoderm is formed at least in part from endomesodermal pouches (summarized in Gross et al. 2015).

  128. 128.

    At that time within the ‘cladus’ Scolecida (lower worms), the ‘class’ Aschelminthes (= Nemathelminthes) included the orders Rotatoria, Gastrotricha, Kinorhyncha, Nematodes, Nematomorpha, Acanthocephali, the ‘cladus’ Annelida (segmented woms) included the classes Archiannelida, Chaetopoda, Hirudinea, Echiuroidea and Sipuncoloidea, and the “cladus” Arthropoda comprised the classes Branchiata, Arachnoidea (including Linguatulida), Pantopoda, Protracheata (Onychophora), Tardigrada, and Eutracheata, all belonging to the ‘phylum’ Protostomia (see Claus and Grobben 1917).

  129. 129.

    Claus and Grobben (1917); see footnote 128.

  130. 130.

    “(…) eine descendenztheoretische Auseinandersetzung, die jeder plaäontologischen Basis entbehrt, muß rein hypothetisch bleiben. Da die weitere Erforschung der Tardigraden keinen Nutzen von stammesgeschichtlichen Hypothesen hat, …so mag es genügen, wenn hier ohne Äußerung über die Descendenz und die Ascendenz der Tardigraden diese als Klasse der Arthropoden bezeichnet und zwischen den Protracheaten und den Eutracheaten eingereiht werden”. [(...) a theoretical dispute on the descent with no paleontological basis must remain purely hypothetic. Since the further exploration of tardigrades does not benefit from phylogenetic hypotheses, (…), it may suffice to describe—without comments on descent and ascent—tardigrades as class of arthropods and to place them between Protracheata and Eutracheata] (Marcus 1929a, p. 143/144).

  131. 131.

    Created 1812 by Jean Léopold Nicolas Frédéric Cuvier (1769–1832), known as Georges Cuvier, eminent French naturalist and zoologist. In his textbook in 1817 he wrote under the heading “Les animaux articulés”: “Cette troisième forme générale est tout aussi caractérisée que celle des animaux vertébrés; le squelette n’est pas intérieur comme dans derniers (…). Les anneaux articulés qui entourent les corps et souvent les membres, en tiennent lieu (…) and Le sytème d’organes par lequel les animaux articulés se ressemblent le plus, c’est celui des nerfs”. [This third general form is as well characterised as that of the Vertebrata; the skleton is not internal as in the latter (…). The articulated rings which encircle the body, and often the limbs, supply the place of it, (…) and the system of organs in which the Articulata particularly resemble each other, is that of the nerves] and distinguished the four classes Annelides, Crustacès, Arachnides, and Insectes (Cuvier 1817, p. 508 and 509, see also Cuvier 1812).

  132. 132.

    The clade Ecdysozoa (´écdysis, Gr. = creeping out; zoon, Gr. = animal) was erected by Aguinaldo et al. (1997).

  133. 133.

    pántos, Gr. = complete.

  134. 134.

    This series was published on behalf of the “Preußische Akademie der Wissenschaften zu Berlin” (Prussian Academy of Sciences in Berlin), a learned society founded in 1700.

  135. 135.

    Heinrich Georg Bronn (1800–1862), German doctor of medicine, professor of Zoology at the University of Heidelberg (Germany), geologist and palaeontologist. Prior to 1862 he wrote three volumes in the series “Die Klassen und Ordnungen des Thier-Reichs”; the work was continued by other naturalists.

  136. 136.

    “Für den Grad der Ausführlichkeit der nachstehenden Naturgeschichte der Tardigraden, die keine Enzyklopädie sein will, waren mir die Bedürfnisse des Universitätsunterrichtes und der allgemein-zoologischen Forscherarbeit maßgebend (…). Für das allgemein-zoologische Interesse an der Geschichte der Tardigradenforschung dürfte der entsprechende Abschnitt (…) ausreichen”. [For the level of detail of the following natural history of tardigrades, who wants to be not an encyclopedia, the needs of the university instruction and general-zoological research work had me prevail (...) for the general-zoological interest in the history of Tardigradenforschung should the relevant section (…) sufficient] (Marcus 1929b, p V, preface).

References

  • Aguinaldo A, Turbeville JM, Linford LS, Rivera MC, Garey JR, Raff RE, Lake JA (1997) Evidence for a clade of nematodes, arthropods and other moulting animals. Nature 387:489–493

    CAS  Google Scholar 

  • Baccetti B, Rosati F (1971) Electron microscopy on Tardigrada. III. The integument. J Ultrastruct Res 34:214–243

    Article  CAS  Google Scholar 

  • Bailey JW (1850) Microscopical observations made in South Carolina, Georgia and Florida. Smithsonian Contrib Knowl 2:1–48 http://www.biodiversitylibrary.org/item/100990

    Google Scholar 

  • Basse A (1905) Beiträge zur Kenntnis des Baues der Tardigraden. Z wiss Zool 80:259–281

    Google Scholar 

  • Baumann H (1921a) Mitteilungen zum feineren Bau der Tardigraden. Zool Anz 52:56–67 http://www.biodiversitylibrary.org/item/37571

    Google Scholar 

  • Baumann H (1921b) Beitrag zur Kenntnis der Anatomie der Tardigraden (Macrobiotus hufelandi). Z wiss Zool 118:637–652 http://www.biodiversitylibrary.org/item/37608

    Google Scholar 

  • Baumann H (1922) Die Anabiose der Tardigraden. Zool Jb Syst 45:501–556 http://www.biodiversitylibrary.org/item/38163

    Google Scholar 

  • Bertolani R, Nelson DR (2011) Changes in scientific approaches as seen through 35 years of tardigrade symposia. J Zool Syst Evol Res 49:2–5

    Article  Google Scholar 

  • Broca P (1860) Rapport sur la question soumise a la Société de biologie par M.M. Pouchet, Pennetier, Tinel et Doyère au sujet de la réviviscence des animaux desséchés, lu à Société de Biologie, le 17 et le 24 mars 1860. Mem Soc Biol 3me Série II:1–139

    Google Scholar 

  • Carus CG (1834) Über den Begriff des latenten Lebens. Arch Anat Physiol wissensch Medizin 1834:551–556 http://www.biodiversitylibrary.org/item/109154

    Google Scholar 

  • Claus C (1887) Lehrbuch der Zoologie (4. umgearbeitete und vermehrte Auflage). Elwert’sche Verlagsbuchhandlung, Marburg

    Google Scholar 

  • Claus C, Grobben K (1917) Lehrbuch der Zoologie (9. neubearbeitete Auflage des Lehrbuches von C. Claus). Elwert’sche Verlagsbuchhandlung, Marburg

    Google Scholar 

  • Corti B (1774) Osservazioni microscopiche sulla Tremella e sulla circulazione del fluido in una pianta acquajuola (Chara). G. Rocchi, Lucca http://books.google.com

    Google Scholar 

  • Cuénot L (1893) Commensaux et parasites des Echinodermes : Tardigrada. Rev biol N’nord de la France 5:16–19 (1 plate, no 1). http://www.biodiversitylibrary.org/item/41751

  • Cuénot L (1924) Tardigrades. Faune de France 24. Lechevalier, Paris. http://faunedefrance.org/bibliotheque/docs/L.CUENOT%28FdeFr24%29Tardigrades.pdf

  • Cuénot L (1925) L’entonnoir vibratile de la néphridie des Péripates. Ann Soc Roy Zool Belgique 56:13–17

    Google Scholar 

  • Cuvier GB (1812) Sue un nouveau rapprochement à ètablier entre les classes qui composant le Régne Animal. Ann Mus Hist 19:73–84 (not seen)

    Google Scholar 

  • Cuvier GB (1817) Le règne animal; distribué d’après son organisation, pour servir de base à l’histoire naturelle des animaux et d’introduction à l’anatomie comparée. Tome II. Deterville, Paris. http://www.biodiversitylibrary.org/item/18038

  • Davaine C (1858) Recherches sur les conditions de l’existence ou de la non-existence de la réviviscence chez des espèces appartenant au meme genre. Ann sc nat sér 4 10:335–337 http://www.biodiversitylibrary.org/bibliography/13266

    Google Scholar 

  • de Blainville MH (1826) Sur quelques petits Animaux qui, après avoir perdu le mouvement par la desiccation, le reprennent comme auparavant quand on vient à les mettre dans l’eau. Ann sc nat 9:104–110 http://www.biodiversitylibrary.org/item/29169

    Google Scholar 

  • Doyère ML (1840) Mémoire sur les Tardigrades (chapitre I, II, II printing error). Ann sc nat sér 2, 14(Zool):269–361 (8 plates, black and white, no 12–19). http://www.biodiversitylibrary.org/item/47974

  • Doyère ML (1842a) Mémoire sur l’organisation et les rapports naturels des tardigrades, et sur la propriété remarquable qu’ils possèdent de revenir a l avie après avoir été complètement desséchés. Thèses soutenues devant la Facultè des Sciences de Paris. Paul Renouard, Paris (8 plates, partly coloured)

    Google Scholar 

  • Doyère ML (1842b) Mémoire sur les Tardigrades (chapitre III). Ann sc nat, sér 2, 17(Zool):193–205. http://www.biodiversitylibrary.org/item/47977

  • Doyère ML (1842c) Mémoire sur les Tardigrades (chapitre. II). Ann sc nat sér. 2, 18(Zool):5–35. p 33–35 is an appendix). http://www.biodiversitylibrary.org/item/47978

  • Du Trochel (sic! = Dutrochet) (1812) Recherches sur les Rotifères. Ann mus hist nat 19:355–387 (1 plate, no 18). http://www.biodiversitylibrary.org/item/23270

  • Dujardin F (1838) Mémoire sur un ver parasite constituant un nouveau genre voisin des Rotifères, sur le Tardigrade et sur les Systolides ou Rotateurs en général. Ann sc nat sér 2, 10(Zool):175–191 (1 plate, no 2). http://www.biodiversitylibrary.org/bibliography/13266

  • Dujardin F (1841) Histoire naturelle des zoophytes. Infusoires, comprenant la physiologie et la classification de ces animaux, et la manière de les étudier à l’aide du microscope. Roret, Paris. www.biodiversitylibrary.org/bibliography/51143

  • Dujardin F (1851) Sur les Tardigrades et sur une espèce à longs pieds vivant dans l’eau de mere. Observations Zoologiques II. Ann sc nat sér. 3, 15(Zool):161–166 (Pl 3). http://www.biodiversitylibrary.org/item/48051

  • Dutrochet RHJ (1837) Mémoires pour servir à l’histoire anatomique et physiologique des végetaux, vol 2. JB Baillière, Londres https://archive.org/details/mmoirespourser02dutr

    Google Scholar 

  • Ehrenberg CG (1834) Über das Wiederaufleben der Moosfauna. Isis von Oken Heft 6/7:710–713 http://www.biodiversitylibrary.org/item/87984

    Google Scholar 

  • Ehrenberg CG (1853a) Das organisch kleinste Leben über dem ewigen Schnee der höchsten Central-Alpen. Ber Bekanntm geeign Verhandl Königl Preuß Akad Wissensch Berlin 1853:315–333. http://www.biodiversitylibrary.org/item/109942

  • Ehrenberg CG (1853b) Diagnoses novarum formarum. Ber Bekanntm geeign Verhandl Königl Preuß Akad Wissensch Berlin 1853:526–533. http://www.biodiversitylibrary.org/item/109942

  • Ehrenberg CG (1854) Mikrogeologie: das Erden und Felsen schaffende Wirken des unsichtbar kleinen selbständigen Lebens auf der Erde. Leopold Voss, Leipzig http://books.google.com

    Google Scholar 

  • Ehrenberg CG (1859) Beitrag zur Bestimmung des stationären mikroskopischen Lebens in bis 20,000 Fuß Alpenhöhe. Abhandl Kgl Akad Wissensch Berlin 1858:429–456 (Plate 1–3). http://www.biodiversitylibrary.org/item/93366

  • Eibye-Jacobsen J (1997) New observations on the embryology of the Tardigrada. Zool Anz 235:201–216

    Google Scholar 

  • Eichhorn JCE (1775) Beyträge zur Natur-Geschichte der kleinsten Wasser-Thiere die mit keinem blossen Auge können gesehen werden und die sich in den Gewässern in und um Danzig befinden. Johann Emanuel Friedrich Müller, Danzig. http://books.google.com

  • Gabriel WN, McDuff R, Patel SK, Gregory TR, Jeck WR, Jones CD, Goldstein B (2007) The tardigrade Hypsibius dujardini, a new model for studying the evolution of development. Dev Biol 312:545–549

    Article  CAS  Google Scholar 

  • Giard A (1894) L’anhydrobiose ou ralentissement des phenomenes vitaux. CR hebd Séanc Mem Soc Biol Paris 1 10(46):497–500 http://www.biodiversitylibrary.org/item/100649

    Google Scholar 

  • Goeze JAE (1773) 2. Beobachtung: Über den kleinen Wasserbären. In: Herrn Karl Bonnets Abhandlungen aus der Insektologie, aus dem Französischen übersetzt und mit einigen Zusätzen herausgegeben von Joh. August Ephraim Goeze, Pastor bei der St. Blasii Kirche in Quedlinburg. JJ Gebauers Wittwe und Joh Jacob Gebauer, Halle, pp 367–355. http://www.biodiversitylibrary.org/item/102801#page/7/mode/1up

  • Graff L (1877) Das Genus Myzostoma (F.S. Leuckart). Verlag von Wilhem Engelmann, Leipzig. http://www.bodleian.ox.ac.uk/dbooks

  • Greeff R (1865) Ueber das Nervensystem der Bärthierchen, Arctiscoida C.A.S. Schultze (Tardigraden Doyère) mit besonderer Berücksichtigung der Muskelnerven und deren Endigungen. Arch mikrosk Anat 1:101–123 (1 plate, no IV). http://www.biodiversitylibrary.org/item/49502

  • Greeff R (1866) Untersuchungen über den Bau und die Naturgeschichte der Bärthierchen (Arctiscoida C.A.S. Schultze). Arch mikrosk Anat 2:102–131 (2 plates, no VI and VII). http://www.biodiversitylibrary.org/item/49504

  • Greven H (1980) Die Bärtierchen Die Neue Brehm Bücherei 537. Ziemsen-Verlag, Wittenberg Lutherstadt

    Google Scholar 

  • Greven H (2015) About the little water bear – A commented translation of Goeze’s note „Ueber den kleinen Wasserbär“ from 1773. Acta Biol Benrodis 17:1–27

    Google Scholar 

  • Gross V, Treffkorn S, Mayer G (2015) Tardigrada. In: Wanninger A (ed) Evolutionary developmental biology of invertebrates 3: Ecdysozoa I: Non-tetraconata. Springer, Wien, pp 35–52

    Google Scholar 

  • Grothman GT, Johansson C, Chilton G, Kagoshima H, Tsujimoto M, Suzuki AC (2017) Gilbert Rahm and the status of Mesotardigrada Rahm, 1937. Zool Sci 34:5–10

    Article  Google Scholar 

  • Haeckel E (1896) Systematische Phylogenie der Wirbellosen (Invertebrata). Zweiter Theil des Entwurfs einer systematischen Stammesgeschichte. Georg Reimer, Berlin. http://www.biodiversitylibrary.org/item/22322

  • Hay WP (1907) A bear animalcule renamed. Proc Biol Soc Washington 19(1906):46–47 http://www.biodiversitylibrary.org/item/19616

    Google Scholar 

  • Heinis F (1910) Systematik und Biologie der moosbewohnenden Rhizopoden, Rotatorien und Tardigraden der Umgebung von Basel mit Berücksichtigung der übrigen Schweiz. Arch Hydrobiol Planktonkd 5:89–166, 217–256

    Google Scholar 

  • Heinis F (1921) Über die Mikrofauna alpiner Polster- und Rosettenpflanzen. Festschr Feier d. 60. Geburtstages von Friedrich Zschokke 6:1–30

    Google Scholar 

  • Hejnol A, Schnabel R (2005a) What a couple of dimensions can do for you: comparative developmental studies using 4D microscopy–examples from tardigrade development. Int Comp Biol 46:151–161 soll 2006 sein

    Article  Google Scholar 

  • Hejnol A, Schnabel R (2005b) The eutardigrade Thulinia has an indeterminate development and the potential to regulate early blastomere ablations. Development 132:1349–1361

    Article  CAS  Google Scholar 

  • Henneke J (1911) Beiträge zur Kenntnis der Biologie und Anatomie der Tardigraden (Macrobiotus macronyx Duj.). Z wiss Zool 97:721–752 (1 plate, no 33). http://www.biodiversitylibrary.org/item/37601

  • Hesse A (1995) Die Professoren und Dozenten der preußischen pädagogischen Akademien (1926–1933) und Hochschulen für Lehrerbildung (1933–1941). Deutscher Studien-Verlag, Weinheim

    Google Scholar 

  • Hufeland CW (1826) Makrobiotik oder die Kunst das menschliche Leben zu verlängern, 6th edn. Macklot, Stuttgart. https://archive.org/details/makrobiotikoderd00hufeuoft

  • Kaufmann J (1851) Über die Entwicklung und systematische Stellung der Tardigraden. Z wiss Zool 3:220–232 (1 plate, no II). http://www.biodiversitylibrary.org/item/50073

  • Keilin DK (1959) The Leeuwenhoek Lecture. The problem of anabiosis or latent life: history and current concept. Proc R Soc Lond Ser B 150:149–191

    Article  CAS  Google Scholar 

  • Kinchin IM (1994) The biology of tardigrades. Portland Press, London

    Google Scholar 

  • Kristensen RM (1980) Zur Biologie des marinen Heterotardigraden Tetrakentron synaptae. Helgoländer Meeresunters 34:165–177

    Article  Google Scholar 

  • Lance D (1896) Contribution á l’étude anatomique et biologique des Tardigrades (Genre Macrobiotus- Schultze), 229 pp (3 plates). Mauchassat, Paris

    Google Scholar 

  • Lauterborn R (1906) Demonstrationen aus der Fauna des Oberrheins und seiner Umgebung. Verh Deutsch zool Ges 16:265–268 http://www.biodiversitylibrary.org/item/181877

    Google Scholar 

  • Linné C (1790) Insecta aptera. Acarus. In: JF Gmelin (cura) Systema naturae per regna tria naturae: secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis (13 ed.) Tomus I, pars 5. Emanuel Beer, Lipsiae, p 2924. http://www.biodiversitylibrary.org/item/83109

  • Maire A (1892) Catalogue des Théses de Sciences soutenues en France de 1810 a 1890 inclusivement. H. Welter, Paris

    Google Scholar 

  • Marcus E (1927) Zur Anatomie und Ökologie mariner Tardigraden. Zool Jahrb Syst 53:487–558

    Google Scholar 

  • Marcus E (1928a) Zur Ökologie und Physiologie der Tardigraden. Zool Jahrb Phys 44:323–370

    Google Scholar 

  • Marcus E (1928b) Zur vergleichenden Anatomie und Histologie der Tardigraden. Zool Jahrb Phys 45:99–158 (3 plates, no 5–8) (Festschrift Hesse)

    Google Scholar 

  • Marcus E (1928c) Spinnentiere oder Arachnoidea IV: Bärtierchen (Tardigrada). In: Dahl F (ed) Die Tierwelt Deutschlands und der angrenzenden Meeresteile. 12. Teil. Gustav Fischer, Jena, pp 1–230

    Google Scholar 

  • Marcus E (1929a) Zur Embryologie der Tadigraden. Zool Jb Anat 50:333–384 (Pl 8)

    Google Scholar 

  • Marcus E (1929b) Tardigrada. In: H.G. Bronn’s Klassen und Ordnungen des Tierreichs 5, IV, 3. Akademische Verlagsgesellschaft, Leipzig, pp 1–608

    Google Scholar 

  • Marcus E (1936) Tardigrada. In: Hesse R (ed) Das Tierreich 66. Lieferung. Walter de Gruyter, Berlin, pp 1–340

    Google Scholar 

  • Martini E (1912) Studien über die Konstanz histologischer Elemente. III. Hydatina senta. Z wiss Zool 102:425–645 http://www.biodiversitylibrary.org/item/37603

    Google Scholar 

  • Maucci W (1982) A history of tardigrade taxonomy. In: Proceedings of the Third International Symposium on the Tardigrada, Johnson City, Tennessee, 3–6 August 1980. East Tennessee State University Press, Johnson City, TN, pp 11–30

    Google Scholar 

  • Morek W, Gasiorek P, Stec D, Blagden G, Michalczyk L (2016) Experimental taxonomy exposes ontogenetic variability and elucidates the taxonomic value of claw configuration in Milnesium Doyère, 1840 (Tardigrada: Eutardigrada: Apochela). Contrib Zool 85:173–200

    Google Scholar 

  • Müller OF (1785) Von den Bärthierchen. Archiv der Insektengeschichte Teil I, 6. Heft, 25–31 (Pl 36). http://www.biodiversitylibrary.org/item/44317

  • Murray J (1907) The encystment of Macrobiotus. Zoologist 11:4–11

    Google Scholar 

  • Murray J (1908) Encystment of Tardigrada. Trans R Soc Edinburgh 45 pt 4(31):837–854 (Pl I II). http://www.biodiversitylibrary.org/item/130552

  • Murray J (1910) British Antarctic Expedition 1907–1909. Reports on the scientific investigations, vol 1, Biology, Part V Tardigrada. William Heinemann, London, pp 81–185 (8 plates no XIV–XXI)

    Google Scholar 

  • Needham JT (1743) Concerning chalky tubulous concretions called Malm: with some microscopical observations on the Farina of Red Lily, and of Worms discovered in Smutty Corn. Phil Trans 42:634–641 http://rstl.royalsocietypublishing.org

    Article  Google Scholar 

  • Perty M (1834) Einige Bemerkungen über die Familie Xenomorphidae Pty. oder die Sippe Arctiscon Schrank (Macrobiotus Schultze, Trionychicum Ehrb.) Isis von Oken 1834. Heft 12:1241–1246

    Google Scholar 

  • Plate L (1889) Beiträge zur Naturgeschichte der Tardigraden. Zool Jahrb Anat 3:487–550 (3 plates, no XX–XII). http://www.biodiversitylibrary.org/item/41843

    Article  Google Scholar 

  • Preyer W (1880) Naturwissenschaftliche Thatsachen und Probleme. Populäre Vorträge. Paetel, Berlin

    Google Scholar 

  • Preyer W (1891) Über die Anabiose. Biol Ctrbl 11:1–5. http://www.biodiversitylibrary.org/item/17522

  • Rahm G (1923) Biologische und physiologische Beiträge zur Kenntnis der Moosfauna. Zeitschr allg Physiol 20:1–34 (Pl 1)

    Article  Google Scholar 

  • Rahm G (1925) Die Cystenbildung bei den wasserlebenden Tardigraden. Verh internat Ver theor angew Limnol 3:364–371

    Google Scholar 

  • Rahm G (1926) Die Trockenstarre (Anabiose) der Moostierwelt (Ihr Verlauf, ihre Bedeutung und ihr Unterschied von der Cystenbildung). Biol Zentralbl 46:452–477

    Google Scholar 

  • Ramazzotti G, Maucci W (1983) Il Phylum Tardigrada (III edizione riveduta e aggiornata). Memorie dell’ Istituto Italiano di Idrobiologia Dott Marco de Marchi 41:1–1012

    Google Scholar 

  • Rebecchi L, Altiero T, Guidetti R (2007) Anhydrobiosis: the extreme limit of desiccation tolerance. ISJ 4:65–81

    Google Scholar 

  • Reukauf E (1912a) Über das Simplexstadium und die Mundwerkzege der Macrobioten. Zool Anz 39:369–372 http://www.biodiversitylibrary.org/item/95291

    Google Scholar 

  • Reukauf E (1912b) Ein Verderber des Wasserbären Macrobiotus lacustris (DUJ.), Macrobiotophthora vimariensis Reuk. Centralbl Bakteriol Parasitenkd Infektionskrankh 63, Abt. 1:390–393. https://archive.org/details/centralblattfr63jena

  • Richters F (1900) Beiträge zur Kenntnis der Fauna der Umgebung von Frankfurt a. M. Wiss Abh. Ber Senckenberg Naturf Ges 1900:21–44 (3 plates, no III–VI). http://www.biodiversitylibrary.org/item/36149

  • Richters F (1904a) Die Eier der Tardigraden. Ber Senckenberg Naturf Ges. II. Wissenschaftl Abhandlungen 1904:59–72 (2 plates, no IV & V). http://www.biodiversitylibrary.org/bibliography/14292

  • Richters F (1904b) Arktische Tardigraden. In: Römer F, Schaudinn F (eds) Fauna arctica. Eine Zusammenstellung der arktischen Tierformen. 3:493–508. http://www.biodiversitylibrary.org/item/23113

  • Richters F (1908) Marine Tardigraden. Zool Anz 33:77–85 http://www.biodiversitylibrary.org/item/37969

    Google Scholar 

  • Richters F (1909a) Marine Tardigraden. Verh Deutsch Zool Ges 19:84–94 http://www.biodiversitylibrary.org/item/182001

    Google Scholar 

  • Richters F (1909b) Tardigraden-Studien 40. Ber Senckenbergi Naturf Ges. II. Teil: Wissenschaftl Mitteilungen 40:28–44 (2 plates, no I & II). http://www.biodiversitylibrary.org/item/35680

  • Richters F, Krumbach T (1926) Tardigrada. In: Kükenthal W, Krumbach T (eds) Handbuch der Zoologie, vol 3. Walter de Gruyter, Berlin, pp 1–68

    Google Scholar 

  • Schmitt O, Schultze V (1931) Wilhelm Titels Bildnisse Greifswalder Professoren. Rattsbuchhandlung L. Bamberg, Greifswald

    Google Scholar 

  • Schultze CAS (1834a) Macrobiotus hufelandii, animal e crustaceorum classe novum etc. Apud Carolus Curths, Berlini (1 plate). urn:nbn:de:bvb:12-bsb10232115-1

    Google Scholar 

  • Schultze CAS (1834b) Über Macrobiotus Hufelandii. Okens Isis 1834, Heft 6/7:708–710 (1 plate, no Pl 12). http://www.biodiversitylibrary.org/item/87984

  • Schultze CAS (1840) Echiniscus Bellermanni, animal crustaceum, Macrobioto Hufelandii affine. Reimer, Berolini. urn:nbn:de:bvb:12-bsb10232114-5

    Google Scholar 

  • Schultze CAS (1861) Echiniscus creplini, animalculum e familia Arctiscoidum etc. Typis Frid Guil Kunike Reg Univers Typogr, Gryphiae. urn:nbn:de:bvb:12-bsb10231911-2

    Google Scholar 

  • Schultze M (1865) Echiniscus sigismundi, ein Arctiscoide der Nordsee. Arch mikrosk Anat 1:1–9 (1 plate, no 26). http://www.biodiversitylibrary.org/item/49502

    Article  Google Scholar 

  • Senebier J (1795) Ueber die vornehmsten mikroskopischen Entdeckungen in den drey Naturreichen nebst ihrem Einfluß auf die Vervollkomnung des menschlichen Geistes. Aus dem Französischen des Herrn Senebier. Mit Anmerkungen und Zusätzen von Johann August Donndorf. Bey Heinrich Gräff, Leipzig. http://resolver.sub.uni-goettingen.de/purl?PPN647652889

  • Spallanzani L (1776) Opuscoli di Fisica animale, e vegetabile. Societá Tipografica, Modena. http://books.google.com

  • Spallanzani L (1803) Tracts of the natural history of animals and vegetables (translated from the original Italian of the Abbé Spallanzani by John Graham Dalyell with physiological illustrations), vol II, 2nd edn. Printed for William Creech and Archd Constable/TN Longman and O Rees, Edinburgh/London. https://archive.org/details/tractsonnaturalh12spal

  • Steiner G (1926) Bathyechiniscus tetronyx n. g. n. sp. ein neuer mariner Tardigrade. In: von Drygalski E (ed) Deutsche Südpolar-Expedition 1901–1903 XVIII. Band, Zoologie 10. Band. Walter de Gruyter, Berlin, pp 478–481

    Google Scholar 

  • Sternberg K, von Krombholz JV (1838) Bericht über die 15. Versammlung deutscher Naturforscher und Ärzte in Prag im September 1837. Gottlieb Haase Söhne, Prag. http://books.google.com

  • Thulin G (1911) Beiträge zur Kenntnis der Tardigradenfauna Schwedens. Ark Zool 7(16):1–60. http://www.biodiversitylibrary.org/item/30233

    Article  Google Scholar 

  • Thulin G (1928) Über die Phylogenie und das System der Tardigraden. Hereditas 11:207–266

    Article  Google Scholar 

  • Usinger RL (1964) The role of Linnaeus in the advancement of entomology. Annu Rev Entomol 9(1):16

    Article  Google Scholar 

  • van Leeuwenhoek A (1702) On certain animalcules found in the sediment in gutters of the roofs of houses. Letter 144. In: The select works of Antony van Leeuwenhoek, vol 2 (trans: Hoole S (1807)). London, pp 207–213. http://www.biodiversitylibrary.org/item/26600

  • Voigt FS (1843) Das Thierreich geordnet nach seiner Organisation. Als Grundlage der Naturgeschichte der Thiere und Einleitung in die vergleichende Anatomie vom Baron von Cuvier (nach der zweiten vermehrten Ausgabe übersetzt und durch Zusätze erweitert von F.S. Voigt, nach, vol 6 Zoophyten. Brockhaus, Leipzig, p 427–432. http://www.biodiversitylibrary.org/item/88935

  • von Erlanger R (1895a) Zur Morphologie und Embryologie eines Tardigraden, Macr. macronyx. Biol Ctrbl 15:772–777 http://www.biodiversitylibrary.org/item/17825

    Google Scholar 

  • von Erlanger R (1895b) Beiträge zur Morphologie der Tardigraden I. Zur Embryologie eines Tardigraden: Macrobiotus macronyx Dujardin. Morphol Jahrb 2:491–513 (2 plates, no 20 and 21)

    Google Scholar 

  • von Kennel J (1891) Die Verwandtschaftsbeziehungen und die Abstammung der Tardigraden. S-Ber Dorp Naturf Ges 1891:504–512

    Google Scholar 

  • von Schrank P (1803) Fauna boica. Durchgedachte Geschichte der in Baiern einheimischen und zahmen Thieren, vol 3. Philipp Krüll, Landshut https://doi.org/10.5962/bhl.title.44923

    Google Scholar 

  • von Siebold CT (1848) Lehrbuch der vergleichenden Anatomie der wirbellosen Thiere. Verlag von Veit & Comp, Berlin. https://ia601409.us.archive.org

  • von Wenck W (1914) Entwicklungsgeschichtliche Untersuchungen an Tardigraden (Macrobiotus lacustris Duj.). Zool Jahrb Anat 37:465–514 (4 plates, no 35–38)

    Google Scholar 

  • Westheide W, Rieger G (2013) Spezielle Zoologie Teil1: Einzeller und Wirbellose Tiere, 3rd edn. Springer Spektrum, Heidelberg

    Google Scholar 

  • Wright JC (1988) The tardigrade cuticle. I. Fine structure and the distribution of lipids. Tissue Cell 20:745–758

    Article  CAS  Google Scholar 

  • Wright JC (2001) Cryptobiosis 300 years on from van Leuwenhoek: what have we learned about tardigrades? Zool Anz 240:563–582

    Article  Google Scholar 

  • Wright JC, Westh P, Ramlov H (1992) Cryptobiosis in Tardigrada. Biol Rev 67:1–29

    Article  Google Scholar 

Download references

Acknowledgements

I thank Prof Dr R Schill (Stuttgart, Germany) for the invitation to contribute to this book and for providing Doyère’s dissertation; Dr H Dastych (Hamburg, Germany), who made some rare literature and illustrations available to me; Prof KI Jönsson, PhD (Kristianstad, Sweden), for a copy of Broca’s report; Dr R Lacher, Museum of German Enlightenment (Halberstadt, Germany) for allowing the use of the portrait of JAE Goeze; the late Dr h.c. Eveline Marcus (1901–1990), who gave me the original of the drawing shown in Fig. 1.23 in the 1960s; Dr C Jared (São Paulo, Brazil), who supplied the contact to the Department of Zoology, Institute of Biosciences, University of São Paulo, and copied the portrait of Marcus (Fig. 1.1, bottom right), which is hanging in the amphitheatre of the University, as well as the photo of Ernst and Eveline Marcus (Fig. 1.19) from the archive of the University; Dr G Guex (Adlikon, Switzerland), who arranged the contact to the Zentralbibliothek Zürich to get the scan of Fig. 1.2 (bottom); Dr M Vakily (Collioure, France) for the help with some French texts; Prof Dr Diane Nelson (Johnson City, USA) for her careful search for linguistic imperfections; and, last but not least, all the institutions that make available old literature to the public.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hartmut Greven .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Greven, H. (2018). From Johann August Ephraim Goeze to Ernst Marcus: A Ramble Through the History of Early Tardigrade Research (1773 Until 1929). In: Schill, R. (eds) Water Bears: The Biology of Tardigrades. Zoological Monographs, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-319-95702-9_1

Download citation

Publish with us

Policies and ethics