Skip to main content

Specificity of Cutting Tool Wear in Processing of Polymer Composite Materials

  • Conference paper
  • First Online:
Book cover Proceedings of the 4th International Conference on Industrial Engineering (ICIE 2018)

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Included in the following conference series:

  • 124 Accesses

Abstract

The article presents the characteristics of polymer composites processing, in particular, the wear process of the cutting tools. It is revealed that composite materials are difficult for machine cutting and require to apply a high-strength tool material and selection of optimal cutting mode. The important task is to reduce the cutting tool wear speed. To solve the problem, the experiment with a variation of the cutting mode was conducted, and the results showed that the tool wears faster at the high cutting speed and cutting depth. With the cutting speed increase, the intensity of the growth of the wear chamfer increases significantly, and therefore, when setting the cutting conditions, one should be guided by a rational combination of the operability of the cutting tool, the quality of the machined surface, and the processing capacity. These studies have also allowed to establish that the uneven wear process is uneven throughout the length of the cutting edge due to the layer structure of the composite.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grigoriev SN, Krasnovskii AN, Kvachev KV (2014) Investigation of impregnation fibrous materials in pultrusion process of polymer composite materials. Int Polym Sci Technol 7:59–62

    Article  Google Scholar 

  2. Gallant FM, Bruck HA, Prickett SE, Cesarec M (2006) Graded polymer composites using twin-screw extrusion: a combinatorial approach to developing new energetic materials. Compos A Appl Sci Manuf 6:957–969. https://doi.org/10.1016/j.compositesa.2005.03.025

    Article  Google Scholar 

  3. Dhand V, Mittal G, Rhee KY, Park S-J, Hui D (2015) A short review on basalt fiber reinforced polymer composites. Compos B Eng 73:166–180. https://doi.org/10.1016/j.compositesb.2014.12.011

    Article  Google Scholar 

  4. Gorokhovsky AV, Escalante-Garcia JI, Gashnikova GYu, Nikulina LP, Artemenko SE (2005) Composite materials based on wastes of flat glass processing. Waste Manag 7:733–736. https://doi.org/10.1016/j.wasman.2004.11.007

    Article  Google Scholar 

  5. Matis IG (1991) Methods and means of inspecting the quality of composite materials. Russ J Nondestr Test 4:277–285

    Google Scholar 

  6. Bakulin VN, Larin AA, Reznichenkod VI (2015) Improving the quality of manufacture of polymer-composite products using computed tomography as a nondestructive-testing method. J Eng Phys Thermophys 2:556–560

    Article  Google Scholar 

  7. Yuanyushkin AS, Rychkov DA, Lobanov DV (2014) Surface quality of the fiberglass composite material after milling. Appl Mech Mater 682:183–187. https://doi.org/10.4028/www.scientific.net/AMM.682.183

    Article  Google Scholar 

  8. Bokhoeva LA, Rogov VE, Chermoshentseva AS, Lobanov DV (2016) Stability and process of destruction of compressed plate of layered composite materials with defects. IOP Conf Ser Mater Sci Eng 142:012077. https://doi.org/10.1088/1757-899X/142/1/012077

    Article  Google Scholar 

  9. Lemma E, Chen L, Siores E, Wang J (2002) Study of cutting fiber-reinforced composites by using abrasive water-jet with cutting head oscillation. Compos Struct 1–4:297–303. https://doi.org/10.1016/S0263-8223(02)00097-1

    Article  Google Scholar 

  10. Zaykin YA, Koztaeva UP (2000) Radiation-induced processes and internal friction in polymer-based composite materials. Radiat Phys Chem 4:387–395. https://doi.org/10.1016/S0969-806X(99)00517-4

    Article  Google Scholar 

  11. Rychkov DA, Yanyushkin AS (2016) The methodology of calculation of forces when machining composite materials. IOP Conf Ser Mater Sci Eng 142:012088. https://doi.org/10.1088/1757-899X/142/1/012088

    Article  Google Scholar 

  12. Fomin VN, Malyukova EB, Berlin AA (2004) Criteria for optimization of processing and fabrication of polymer composite materials. Dokl Chem 4–6:39–41. https://doi.org/10.1023/B:DOCH.0000017274.33223.c8

    Article  Google Scholar 

  13. Yanyushkin AS, Rychkov DA, Lobanov DV (2016) Rationalization of polymer composite materials processing by improving production efficiency. Procedia Eng 150:942–947. https://doi.org/10.1016/j.proeng.2016.07.067

    Article  Google Scholar 

  14. Bailleul JL, Sobotka V, Delaunay D, Jarny Y (2003) Inverse algorithm for optimal processing of composite materials. Compos A Appl Sci Manuf 8:695–708. https://doi.org/10.1016/S1359-835X(03)00141-6

    Article  Google Scholar 

  15. Lobanov DV, Yanyushkin AS, Rychkov DA, Petrov NP (2011) Optimal organization of tools for machining composites. Russ Eng Res 2:156–157. https://doi.org/10.3103/S1068798X11020146

    Article  Google Scholar 

  16. Yanyushkin AS, Rychkov DA (2017) The process of composite materials machining cutting tools profiling. Procedia Eng 206:944–949. https://doi.org/10.1016/j.proeng.2017.10.576

    Article  Google Scholar 

  17. Popov V, Rychkov D, Arkhipov P (2017) Defects in diamonds as the basic adhesion grinding. MATEC Web Conf 129:01003. https://doi.org/10.1051/matecconf/201712901003

    Article  Google Scholar 

  18. Popov V, Arkhipov P, Rychkov D (2017) Adhesive wear mechanism under combined electric diamond grinding. MATEC Web Conf 129:01002. https://doi.org/10.1051/matecconf/201712901002

    Article  Google Scholar 

  19. Lobanov DV, Arhipov PV, Yanyushkin AS, Skeeba VYu (2017) Physical-chemical processes of diamond grinding. IOP Conf Ser Earth Environ Sci 87:082029. https://doi.org/10.1088/1755-1315/87/8/082029

    Article  Google Scholar 

  20. Lobanov DV, Arkhipov PV, Yanyushkin AS, Skeeba VYu (2017) The research into the effect of conditions of combined electric powered diamond processing on cutting power. Key Eng Mater 736:81–85. https://doi.org/10.4028/www.scientific.net/kem.736.81

    Article  Google Scholar 

  21. Yanyushkin AS, Lobanov DV, Arkhipov PV (2015) Research of influence of electric conditions of the combined electro-diamond machining on quality of grinding of hard alloys. IOP Conf Ser Mater Sci Eng 6:012051. https://doi.org/10.1088/1757-899X/91/1/012051

    Article  Google Scholar 

  22. Lobanov DV, Arkhipov PV, Yanyushkin AS, Skeeba VYu (2016) Research of influence electric conditions combined electro-diamond processing by on specific consumption of wheel. IOP Conf Ser Mater Sci Eng 142:012081. https://doi.org/10.1088/1757-899x/142/1/012081

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Rychkov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rychkov, D.A., Yanyushkin, A.S., Popov, V.Y. (2019). Specificity of Cutting Tool Wear in Processing of Polymer Composite Materials. In: Radionov, A., Kravchenko, O., Guzeev, V., Rozhdestvenskiy, Y. (eds) Proceedings of the 4th International Conference on Industrial Engineering. ICIE 2018. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-95630-5_127

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95630-5_127

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95629-9

  • Online ISBN: 978-3-319-95630-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics