Skip to main content

Sources of Betalains

  • Chapter
  • First Online:
Betalains: Biomolecular Aspects

Abstract

Betalains occur only in few plant families of order Caryophyllales where they found vital constituents in edible parts of plants usually in leaves, flowers, and stems. They also occur in some fungi of higher order like in the fly agaric (A. muscaria) and some genera of Basidiomycetes. Red beetroots (B. vulgaris), cacti fruits belonging to the genus Opuntia (mainly Opuntia ficus-indica), the dragon fruits of Hylocereus cacti (mainly Hylocereus polyrhizus), and the Swiss chard (B. vulgaris) are the known edible sources of betacyanins and betaxanthin. The less common edible sources are Ulluco tubers (Ullucus tuberosus), fruits and berries of Eulychnia cacti, and Rivina humilis. It is a class of yellow and red indole-derived pigments which replace anthocyanin pigments in plants and are mainly responsible for coloration, but their role in fungi is unknown. Betalain accumulation occurs in cell vacuoles synthesized mainly in epidermal and subepidermal plant tissues due to their hydrophilicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Singh, G. (2016). Plant systematics. In An integrated approach (3rd ed.). Boca Raton: CRC Press.

    Google Scholar 

  2. Impellizzeri, G., Mangiafico, S., Oriente, G., Piattelli, M., Sciuto, S., Fattorusso, E., et al. (1975). Amino acids and low-molecular-weight carbohydrates of some marine red algae. Phytochemistry, 14(7), 1549–1557.

    Article  CAS  Google Scholar 

  3. Radfar, M., Sudarshana, M. S., & Niranjan, M. H. (2012). Betalains from stem callus cultures of Zaleya decandra LN Burm. f.-A medicinal herb. Journal of Medicinal Plants Research, 6(12), 2443–2447.

    Article  CAS  Google Scholar 

  4. Kumar, S., Singh, P., Mishra, G., Srivastar, S., Jha, K. K., & Khosa, R. L. (2011). Phytopharmacological review of Alternanthera brasiliana (Amaranthaceae). Asian Journal of Plant Science and Research, 1(1), 41–47.

    Google Scholar 

  5. Hilou, A., Millogo-Rasolodimby, J., & Nacoulma, O. G. (2013). Betacyanins are the most relevant antioxidant molecules of Amaranthus spinosus and Boerhavia erecta. Journal of Medicinal Plants Research, 7(11), 645–652.

    CAS  Google Scholar 

  6. Cai, Y., Sun, M., & Corke, H. (2005). HPLC characterization of betalains from plants in the Amaranthaceae. Journal of Chromatographic Science, 43(9), 454–460.

    Article  CAS  Google Scholar 

  7. Pramanik, P., Bhattacharjee, R., & Bhattacharyya, S. (2014). Evaluation of in vitro antioxidant potential of red Amaranth (Amaranthus tricolor) and green Amaranth (Amaranthus viridis) leaves extracted at different temperatures and pH. Annals of Biological Sciences, 2, 26–32.

    CAS  Google Scholar 

  8. Chong, P. H., Yusof, Y. A., Aziz, M. G., Chin, N. L., & Syed Muhammad, S. K. (2014). Evaluation of solvent extraction of Amaranth betacyanins using multivariate analysis. International Food Research Journal, 21(4), 1569–1573.

    Google Scholar 

  9. Biswas, M., Dey, S., & Sen, R. (2013). Betalains from Amaranthus tricolor L. Journal of Pharmacognosy and Phytochemistry, 1(5), 87–95.

    Google Scholar 

  10. Zhou, C., Zhang, L., Wang, H., & Chen, C. (2012). Effect of Amaranthus pigments on quality characteristics of pork sausages. Asian-Australasian Journal of Animal Sciences, 25(10), 1493.

    Article  Google Scholar 

  11. Adhikari, R., Naveen Kumar, H. N., & Shruthi, S. D. (2012). A review on medicinal importance of Basella alba L. International Journal of Pharmaceutical Sciences and Drug Research, 4(2), 110–114.

    Google Scholar 

  12. Chatchawal, C., Nualkaew, N., Preeprame, S., Porasuphatana, S., & Priprame, A. (2010). Physical and biological properties of mucilage from Basella alba L. stem and its gel formulation. Isan Journal of Pharmaceutical Sciences, IJPS, 6(3), 104–112.

    Google Scholar 

  13. Wybraniec, S., & Mizrahi, Y. (2002). Fruit flesh betacyanin pigments in Hylocereus cacti. Journal of Agricultural and Food Chemistry, 50(21), 6086–6089.

    Article  CAS  Google Scholar 

  14. Prajapati, P. K., Singh, S. B., & Jaiswal, S. (2014). Overview on anti-ulcer activity of Basella Alba: A therapeutic herb. International Archive Applied Science Technology, 5, 49–61.

    CAS  Google Scholar 

  15. Swati, S., & Agarwal, P. (2015). A critical review of Potaki (Basella Alba) in Ayurvedic texts with recent studies. Ayushdhara, 2(3), 194–198.

    Google Scholar 

  16. Kumar, B. R. (2016). A review on metabolic engineering approaches for enrichment and production of new secondary metabolites in Basella species. World Journal of Pharmaceutical Sciences, 5, 652–671.

    CAS  Google Scholar 

  17. Kumar, S., Prasad, A. K., Iyer, S. V., & Vaidya, S. K. (2013). Systematic pharmacognostical, phytochemical and pharmacological review on an ethno medicinal plant, Basella alba L. Journal of Pharmacognosy and Phytotherapy, 5(4), 53–58.

    Google Scholar 

  18. Wybraniec, S., & Nowak-Wydra, B. (2007). Mammillarinin: A new malonylated betacyanin from fruits of Mammillaria. Journal of Agricultural and Food Chemistry, 55(20), 8138–8143.

    Article  CAS  Google Scholar 

  19. Szot, D., Starzak, K., Skopińska, A., & Wybraniec, S. (2015). Mass spectrometric detection of new betalains in Mammillaria flowers. Zeszyty Naukowe Towarzystwa Doktorantów Uniwersytetu Jagiellońskiego. Nauki Ścisłe, 10, 189–196.

    Google Scholar 

  20. Kobayashi, N. (2002). Contributions to betalain biochemistry: New structures, condensation reactions, and vacuolar transport. Methods, 12, 25.

    Google Scholar 

  21. Ondarza, M. A. (2016). Cactus Mucilages: Nutritional, health benefits and clinical trials. Journal of Medical and Biological Science Research, 2, 87–103.

    Google Scholar 

  22. Elmarzugi, N. A. (2016). Phytochemical properties and health benefits of Hylocereus undatus. Nanomed Nanotechnol, 1(1), 1–10.

    Google Scholar 

  23. Hamid, N. B. (2011). Inclusion complex formation between natural dye extracted from pitaya fruit skin and Î’-Cyclodextrin: Kinetic and thermodynamic study. Doctoral Dissertation, Universiti Malaysia Pahang.

    Google Scholar 

  24. Ortiz-Hernández, Y. D., & Carrillo-Salazar, J. A. (2012). Pitahaya (Hylocereus spp.): A short review. Comunicata Scientiae, 3(4), 220–237.

    Google Scholar 

  25. Moshfeghi, N., Mahdavi, O., Shahhosseini, F., Malekifar, S., & Khadijeh, S. (2013). Taghizadeh 5 1, 2 Master of Business Administration. IJRRAS, 15, 2.

    Google Scholar 

  26. Nadia, C., Hayette, L., Safia, M., Yasmina, M., Yasmina, H., & Abderezak, T. (2013). Physico-chemical characterisation and antioxidant activity of some Opuntia ficus-indica varieties grown in North Algeria. African Journal of Biotechnology, 12(3), 299–307.

    Article  CAS  Google Scholar 

  27. Piga, A. (2004). Cactus pear: A fruit of nutraceutical and functional importance. Journal of the Professional Association for Cactus Development, 6, 9–22.

    Google Scholar 

  28. Jimenez-Aguilar D, M., Mújica-Paz, H., & Welti-Chanes, J. (2014). Phytochemical characterization of prickly pear (Opuntia spp.) and of its nutritional and functional properties: A review. Current Nutrition & Food Science, 10(1), 57–69.

    Article  Google Scholar 

  29. Paiva, P. M. G., de Souza, I. F. A. C., Costa, M. C. V. V., Santos, A. D. F. S., & Coelho, L. C. B. B. (2016). Opuntia sp. Cactus: Biological Characteristics. Cultivation and Applications, 7(3), 1–14.

    Google Scholar 

  30. Abderrahim, F., Huanatico, E., Segura, R., Arribas, S., Gonzalez, M. C., & Condezo-Hoyos, L. (2015). Physical features, phenolic compounds, betalains and total antioxidant capacity of coloured quinoa seeds (Chenopodium quinoa Willd.) from Peruvian Altiplano. Food Chemistry, 183, 83–90.

    Article  CAS  Google Scholar 

  31. Kugler, F., Graneis, S., Stintzing, F. C., & Carle, R. (2007). Studies on betaxanthin profiles of vegetables and fruits from the Chenopodiaceae and Cactaceae. Zeitschrift für Naturforschung C, 62(5–6), 311–318.

    Article  CAS  Google Scholar 

  32. Kugler, F., Stintzing, F. C., & Carle, R. (2007). Characterisation of betalain patterns of differently coloured inflorescences from Gomphrena globosa L. and Bougainvillea sp. by HPLC–DAD–ESI–MSn. Analytical and Bioanalytical Chemistry, 387(2), 637–648.

    Article  CAS  Google Scholar 

  33. Khan, M. I., Joseph, K. D., Ramesh, H. P., Giridhar, P., & Ravishankar, G. A. (2011). Acute, subacute and subchronic safety assessment of betalains rich Rivina humilis L. berry juice in rats. Food and Chemical Toxicology, 49(12), 3154–3157.

    Article  CAS  Google Scholar 

  34. Mchedlishvili, N. I., Omiadze, N. T., Abutidze, M. O., Rodriguez-Lopez, J. N., Sadunishvili, T. A., Gurielidze, M. A., & Kvesitadze, G. I. (2014). Investigation of phenolic content, antioxidant and antimicrobial activities of natural food red colorant from phytolacca americana l Fruits. Annals of Agrarian Science, 12, 3.

    Google Scholar 

  35. Khan, M. I., Kumar, A., & Giridhar, P. (2016). Betalains and expression of antioxidant enzymes during development and abiotic stress in Rivina humilis L. berries. Turkish Journal of Botany, 40(1), 28–36.

    Article  CAS  Google Scholar 

  36. Khan, M. I., Harsha, P. S., Chauhan, A. S., Vijayendra, S. V. N., Asha, M. R., & Giridhar, P. (2015). Betalains rich Rivina humilis L. berry extract as natural colorant in product (fruit spread and RTS beverage) development. Journal of Food Science and Technology, 52(3), 1808–1813.

    Article  CAS  Google Scholar 

  37. Lim, C. K., Tiong, W. N., & Loo, J. L. (2014). Antioxidant activity and total phenolic content of different varieties of Portulaca grandiflora. International Journal of Phytopharmacy, 4(1), 01–05.

    CAS  Google Scholar 

  38. Swarna, J., Lokeswari, T. S., Smita, M., & Ravindhran, R. (2013). Characterisation and determination of in vitro antioxidant potential of betalains from Talinum triangulare (Jacq.) Willd. Food Chemistry, 141(4), 4382–4390.

    Article  CAS  Google Scholar 

  39. Ramos, M. P. O., Silva, G. D. F., Duarte, L. P., Peres, V., Miranda, R. R. S., de Souza, G. H. B., & Vieira, F. (2010). Antinociceptive and edematogenic activity and chemical constituents of Talinum paniculatum Willd. Journal of Chemical and Pharmaceutical Research, 2(6), 265–274.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Akbar Hussain, E., Sadiq, Z., Zia-Ul-Haq, M. (2018). Sources of Betalains. In: Betalains: Biomolecular Aspects. Springer, Cham. https://doi.org/10.1007/978-3-319-95624-4_2

Download citation

Publish with us

Policies and ethics