Skip to main content

Disinfection

  • Chapter
  • First Online:
Carbon Nanotubes for Clean Water

Abstract

The availability of clean, safe and healthy water is diminishing every day, which is projected to upsurge in future. To address this, numerous water decontamination methods and technologies being developed and adapted, and several new possibilities are in the way through extensive research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References and Future Readings

  1. Das, R., Hamid, S.B.A., Ali, M.E., Ismail, A.F., Annuar, M.S.M., Ramakrishna, S.: Multifunctional carbon nanotubes in water treatment: the present, past and future. Desalination 354, 160–179 (2014)

    Article  CAS  Google Scholar 

  2. Yang, C.N., Mamouni, J., Tang, Y.A., Yang, L.J.: Antimicrobial activity of single-walled carbon nanotubes: length effect. Langmuir 26, 16013–16019 (2010)

    Article  CAS  Google Scholar 

  3. Iijima, S.: Growth of carbon nanotubes. Mater. Sci. Eng., B 19, 172–180 (1993)

    Article  Google Scholar 

  4. Bethune, D., Klang, C., De Vries, M., Gorman, G., Savoy, R., Vazquez, J., et al.: Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363, 605–607 (1993)

    Article  CAS  Google Scholar 

  5. Balasubramanian, K., Burghard, M.: Chemically functionalized carbon nanotubes. Small 1, 180–192 (2005)

    Article  CAS  Google Scholar 

  6. Ong, Y.T., Ahmad, A.L., Zein, S.H.S., Tan, S.H.: A review on carbon nanotubes in an environmental protection and green engineering perspective. Braz. J. Chem. Eng. 27, 227–242 (2010)

    Article  CAS  Google Scholar 

  7. Daniel, S., Rao, T.P., Rao, K.S., Rani, S.U., Naidu, G., Lee, H.-Y., et al.: A review of DNA functionalized/grafted carbon nanotubes and their characterization. Sens. Actuators B Chem. 122, 672–682 (2007)

    Article  CAS  Google Scholar 

  8. Vecitis, C.D., Schnoor, M.H., Rahaman, M.S., Schiffman, J.D., Elimelech, M.: Electrochemical multiwalled carbon nanotube filter for viral and bacterial removal and inactivation. Environ. Sci. Technol. 45, 3672–3679 (2011)

    Article  CAS  Google Scholar 

  9. Upadhyayula, V.K., Deng, S., Mitchell, M.C., Smith, G.B.: Application of carbon nanotube technology for removal of contaminants in drinking water: a review. Sci. Total Environ. 408, 1–13 (2009)

    Article  CAS  Google Scholar 

  10. Ounaies, Z., Park, C., Wise, K., Siochi, E., Harrison, J.: Electrical properties of single wall carbon nanotube reinforced polyimide composites. Compos. Sci. Technol. 63, 1637–1646 (2003)

    Article  CAS  Google Scholar 

  11. Upadhyayula, V.K., Deng, S., Smith, G.B., Mitchell, M.C.: Adsorption of Bacillus subtilis on single-walled carbon nanotube aggregates, activated carbon and NanoCeram™. Water Res. 43, 148–156 (2009)

    Article  CAS  Google Scholar 

  12. Liu, H., Ru, J., Qu, J., Dai, R., Wang, Z., Hu, C.: Removal of persistent organic pollutants from micro-polluted drinking water by triolein embedded absorbent. Bioresour. Technol. 100, 2995–3002 (2009)

    Article  CAS  Google Scholar 

  13. Karthikairaj, K., Isaiarasu, L., Sakthivel, N.: Efficacy of some herbal extracts on microbes causing flacherie disease in mulberry silkworm, Bombyx mori L. J. Biopesticides 7, 89 (2014)

    Google Scholar 

  14. Deokar, A.R., Lin, L.-Y., Chang, C.-C., Ling, Y.-C.: Single-walled carbon nanotube coated antibacterial paper: preparation and mechanistic study. J. Mater. Chem. B 1, 2639–2646 (2013)

    Article  CAS  Google Scholar 

  15. Khin, M.M., Nair, A.S., Babu, V.J., Murugan, R., Ramakrishna, S.: A review on nanomaterials for environmental remediation. Energy Environ. Sci. 5, 8075–8109 (2012)

    Article  CAS  Google Scholar 

  16. Lu, H., Wang, J., Stoller, M., Wang, T., Bao, Y., Hao, H.: An overview of nanomaterials for water and wastewater treatment. Adv. Mater. Sci. Eng. 2016, 10 (2016)

    Google Scholar 

  17. Holt, J.K., Park, H.G., Wang, Y., Stadermann, M., Artyukhin, A.B., Grigoropoulos, C.P., et al.: Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312, 1034–1037 (2006)

    Article  CAS  Google Scholar 

  18. Majumder, M., Chopra, N., Andrews, R., Hinds, B.J.: Nanoscale hydrodynamics: enhanced flow in carbon nanotubes. Nature 438, 44 (2005)

    Google Scholar 

  19. Parks, A.N., Chandler, G.T., Ho, K.T., Burgess, R.M., Ferguson, P.L.: Environmental biodegradability of [14C] single-walled carbon nanotubes by Trametes versicolor and natural microbial cultures found in New Bedford Harbor sediment and aerated wastewater treatment plant sludge. Environ. Toxicol. Chem. 34, 247–251 (2015)

    Article  CAS  Google Scholar 

  20. Hu, L., Gao, S., Ding, X., Wang, D., Jiang, J., Jin, J., et al.: Photothermal-responsive single-walled carbon nanotube-based ultrathin membranes for on/off switchable separation of oil-in-water nanoemulsions. ACS Nano 9, 4835–4842 (2015)

    Article  CAS  Google Scholar 

  21. Tsai, P.-A., Kuo, H.-Y., Chiu, W.-M., Wu, J.-H.: Purification and functionalization of single-walled carbon nanotubes through different treatment procedures. J. Nanomater. 2013, 9 (2013)

    Google Scholar 

  22. Cho, H.-H., Wepasnick, K., Smith, B.A., Bangash, F.K., Fairbrother, D.H., Ball, W.P.: Sorption of aqueous Zn[II] and Cd[II] by multiwall carbon nanotubes: the relative roles of oxygen-containing functional groups and graphenic carbon. Langmuir 26, 967–981 (2010)

    Article  CAS  Google Scholar 

  23. Lee, B., Baek, Y., Lee, M., Jeong, D.H., Lee, H.H., Yoon, J., et al.: A carbon nanotube wall membrane for water treatment. Nat. Commun. 6, 7109 (2015)

    Article  CAS  Google Scholar 

  24. Ma, C.-Y., Huang, S.-C., Chou, P.-H., Den, W., Hou, C.-H.: Application of a multiwalled carbon nanotube-chitosan composite as an electrode in the electrosorption process for water purification. Chemosphere 146, 113–120 (2016)

    Article  CAS  Google Scholar 

  25. Mohammed, M.I., Abdul Razak, A.A., Hussein Al-Timimi, D.A.: Modified multiwalled carbon nanotubes for treatment of some organic dyes in wastewater. Adv. Mater. Sci. Eng. 2014, 10 (2014)

    Article  CAS  Google Scholar 

  26. Goh, P.S., Ismail, A.F.: Graphene-based nanomaterial: the state-of-the-art material for cutting edge desalination technology. Desalination 356, 115–128 (2015)

    Article  CAS  Google Scholar 

  27. Mahmoud, K.A., Mansoor, B., Mansour, A., Khraisheh, M.: Functional graphene nanosheets: the next generation membranes for water desalination. Desalination 356, 208–225 (2015)

    Article  CAS  Google Scholar 

  28. Tijing, L.D., Woo, Y.C., Choi, J.-S., Lee, S., Kim, S.-H., Shon, H.K.: Fouling and its control in membrane distillation—a review. J. Membr. Sci. 475, 215–244 (2015)

    Article  CAS  Google Scholar 

  29. Kyoungjin An, A., Lee, E.-J., Guo, J., Jeong, S., Lee, J.-G., Ghaffour, N.: Enhanced vapor transport in membrane distillation via functionalized carbon nanotubes anchored into electrospun nanofibres. Sci. Rep. 7, 41562 (2017)

    Article  CAS  Google Scholar 

  30. Sun, L., He, X., Lu, J.: Super square carbon nanotube network: a new promising water desalination membrane. Npj Comput Mater. 2, 16004 (2016)

    Article  Google Scholar 

  31. Song, Z., Xu, Z.: Ultimate osmosis engineered by the pore geometry and functionalization of carbon nanostructures. Sci. Rep. 5, 10597 (2015)

    Article  CAS  Google Scholar 

  32. Viraka Nellore, B.P., Kanchanapally, R., Pedraza, F., Sinha, S.S., Pramanik, A., Hamme, A.T., et al.: Bio-conjugated CNT-bridged 3D porous graphene oxide membrane for highly efficient disinfection of pathogenic bacteria and removal of toxic metals from water. ACS Appl. Mater. Interfaces. 7, 19210–19218 (2015)

    Article  CAS  Google Scholar 

  33. Gunawan, P., Guan, C., Song, X., Zhang, Q., Leong, S.S.J., Tang, C., et al.: Hollow fiber membrane decorated with Ag/MWNTs: toward effective water disinfection and biofouling control. ACS Nano 5, 10033–10040 (2011)

    Article  CAS  Google Scholar 

  34. Wei, G., Yu, H., Quan, X., Chen, S., Zhao, H., Fan, X.: Constructing all carbon nanotube hollow fiber membranes with improved performance in separation and antifouling for water treatment. Environ. Sci. Technol. 48, 8062–8068 (2014)

    Article  CAS  Google Scholar 

  35. Fan, X., Zhao, H., Quan, X., Liu, Y., Chen, S.: Nanocarbon-based membrane filtration integrated with electric field driving for effective membrane fouling mitigation. Water Res. 88, 285–292 (2016)

    Article  CAS  Google Scholar 

  36. Maas, M.: Carbon nanomaterials as antibacterial colloids. Materials 9, 617 (2016)

    Article  CAS  Google Scholar 

  37. Kang, S., Mauter, M.S., Elimelech, M.: Physicochemical determinants of multiwalled carbon nanotube bacterial cytotoxicity. Environ. Sci. Technol. 42, 7528–7534 (2008)

    Article  CAS  Google Scholar 

  38. Deng, S., Upadhyayula, V.K., Smith, G.B., Mitchell, M.C.: Adsorption equilibrium and kinetics of microorganisms on single-wall carbon nanotubes. IEEE Sens. J. 8, 954–962 (2008)

    Article  CAS  Google Scholar 

  39. Chen, H., Wang, B., Gao, D., Guan, M., Zheng, L., Ouyang, H., et al.: Broad-spectrum antibacterial activity of carbon nanotubes to human gut bacteria. Small 9, 2735–2746 (2013)

    Article  CAS  Google Scholar 

  40. Kang, S., Herzberg, M., Rodrigues, D.F., Elimelech, M.: Antibacterial effects of carbon nanotubes: size does matter! Langmuir 24, 6409–6413 (2008)

    Article  CAS  Google Scholar 

  41. Rajavel, K., Gomathi, R., Manian, S., Rajendra Kumar, R.T.: In vitro bacterial cytotoxicity of CNTs: reactive oxygen species mediate cell damage edges over direct physical puncturing. Langmuir 30, 592–601 (2014)

    Article  CAS  Google Scholar 

  42. Brinkman, C.L., Schmidt-Malan, S.M., Karau, M.J., Greenwood-Quaintance, K., Hassett, D.J., Mandrekar, J.N., et al.: Exposure of bacterial biofilms to electrical current leads to cell death mediated in part by reactive oxygen species. PLoS ONE 11, e0168595 (2016)

    Article  CAS  Google Scholar 

  43. Maleki Dizaj, S., Mennati, A., Jafari, S., Khezri, K., Adibkia, K.: Antimicrobial activity of carbon-based nanoparticles. Adv. Pharm. Bull. 5, 19–23 (2015)

    Google Scholar 

  44. Monticelli, L., Salonen, E., Ke, P.C., Vattulainen, I.: Effects of carbon nanoparticles on lipid membranes: a molecular simulation perspective. Soft Matter 5, 4433–4445 (2009)

    Article  CAS  Google Scholar 

  45. Chen, K.L., Bothun, G.D.: Nanoparticles meet cell membranes: probing nonspecific interactions using model membranes. Environ. Sci. Technol. 48, 873–880 (2014)

    Article  CAS  Google Scholar 

  46. Simon-Deckers, A., Loo, S., Mayne-L’hermite, M., Herlin-Boime, N., Menguy, N., Reynaud, C., et al.: Size-, composition-and shape-dependent toxicological impact of metal oxide nanoparticles and carbon nanotubes toward bacteria. Environ. Sci. Technol. 43, 8423–8429 (2009)

    Article  CAS  Google Scholar 

  47. Hossain, F., Perales-Perez, O.J., Hwang, S., Román, F.: Antimicrobial nanomaterials as water disinfectant: applications, limitations and future perspectives. Sci. Total Environ. 466, 1047–1059 (2014)

    Article  CAS  Google Scholar 

  48. Brady-Estévez, A.S., Kang, S., Elimelech, M.: A single-walled-carbon-nanotube filter for removal of viral and bacterial pathogens. Small 4, 481–484 (2008)

    Article  CAS  Google Scholar 

  49. Yang, C., Mamouni, J., Tang, Y., Yang, L.: Antimicrobial activity of single-walled carbon nanotubes: length effect. Langmuir 26, 16013–16019 (2010)

    Article  CAS  Google Scholar 

  50. Wang, R., Mikoryak, C., Li, S., Bushdiecker 2nd, D., Musselman, I.H., Pantano, P., et al.: Cytotoxicity screening of single-walled carbon nanotubes: detection and removal of cytotoxic contaminants from carboxylated carbon nanotubes. Mol. Pharm. 8, 1351–1361 (2011)

    Article  CAS  Google Scholar 

  51. Wick, P., Manser, P., Limbach, L.K., Dettlaff-Weglikowska, U., Krumeich, F., Roth, S., et al.: The degree and kind of agglomeration affect carbon nanotube cytotoxicity. Toxicol. Lett. 168, 121–131 (2007)

    Article  CAS  Google Scholar 

  52. Liu, S., Wei, L., Hao, L., Fang, N., Chang, M.W., Xu, R., et al.: Sharper and faster “nano darts” kill more bacteria: a study of antibacterial activity of individually dispersed pristine single-walled carbon nanotube. ACS Nano 3, 3891–3902 (2009)

    Article  CAS  Google Scholar 

  53. Huang, T., Tzeng, Y., Liu, Y., Chen, Y., Walker, K., Guntupalli, R., et al.: Immobilization of antibodies and bacterial binding on nanodiamond and carbon nanotubes for biosensor applications. Diam. Relat. Mater. 13, 1098–1102 (2004)

    Article  CAS  Google Scholar 

  54. Arias, L.R., Yang, L.: Inactivation of bacterial pathogens by carbon nanotubes in suspensions. Langmuir 25, 3003–3012 (2009)

    Article  CAS  Google Scholar 

  55. Akasaka, T., Watari, F.: Capture of bacteria by flexible carbon nanotubes. Acta Biomater. 5, 607–612 (2009)

    Article  CAS  Google Scholar 

  56. De Volder, M.F., Tawfick, S.H., Baughman, R.H., Hart, A.J.: Carbon nanotubes: present and future commercial applications. Science 339, 535–539 (2013)

    Article  CAS  Google Scholar 

  57. Liu, X., Wang, M., Zhang, S., Pan, B.: Application potential of carbon nanotubes in water treatment: a review. J. Environ. Sci. 25, 1263–1280 (2013)

    Article  CAS  Google Scholar 

  58. Seo, Y., Hwang, J., Kim, J., Jeong, Y., Hwang, M.P., Choi, J., et al.: Antibacterial activity and cytotoxicity of multi-walled carbon nanotubes decorated with silver nanoparticles. Int. J. Nanomed. 9, 4621–4629 (2014)

    Google Scholar 

  59. Greenlee, L.F., Lawler, D.F., Freeman, B.D., Marrot, B., Moulin, P.: Reverse osmosis desalination: water sources, technology, and today’s challenges. Water Res. 43, 2317–2348 (2009)

    Article  CAS  Google Scholar 

  60. Kar, S., Bindal, R., Tewari, P.: Carbon nanotube membranes for desalination and water purification: challenges and opportunities. Nano Today 7, 385–389 (2012)

    Article  CAS  Google Scholar 

  61. Daer, S., Kharraz, J., Giwa, A., Hasan, S.W.: Recent applications of nanomaterials in water desalination: a critical review and future opportunities. Desalination 367, 37–48 (2015)

    Article  CAS  Google Scholar 

  62. Rodrigues, D.F., Jaisi, D.P., Elimelech, M.: Toxicity of functionalized single-walled carbon nanotubes on soil microbial communities: implications for nutrient cycling in soil. Environ. Sci. Technol. 47, 625–633 (2013)

    Article  CAS  Google Scholar 

  63. Smith, S.C., Rodrigues, D.F.: Carbon-based nanomaterials for removal of chemical and biological contaminants from water: a review of mechanisms and applications. Carbon 91, 122–143 (2015)

    Article  CAS  Google Scholar 

  64. Zhao, X., Liu, R.: Recent progress and perspectives on the toxicity of carbon nanotubes at organism, organ, cell, and biomacromolecule levels. Environ. Int. 40, 244–255 (2012)

    Article  CAS  Google Scholar 

  65. Coccini, T., Roda, E., Sarigiannis, D.A., Mustarelli, P., Quartarone, E., Profumo, A., et al.: Effects of water-soluble functionalized multi-walled carbon nanotubes examined by different cytotoxicity methods in human astrocyte D384 and lung A549 cells. Toxicology 269, 41–53 (2010)

    Article  CAS  Google Scholar 

  66. Clar, J.G., Gustitus, S.A., Youn, S., Silvera Batista, C.A., Ziegler, K.J., Bonzongo, J.C.: Unique toxicological behavior from single-wall carbon nanotubes separated via selective adsorption on hydrogels. Environ. Sci. Technol. 49, 3913–3921 (2015)

    Article  CAS  Google Scholar 

  67. Das, R., Ali, M.E., Hamid, S.B.A., Ramakrishna, S., Chowdhury, Z.Z.: Carbon nanotube membranes for water purification: a bright future in water desalination. Desalination 336, 97–109 (2014)

    Article  CAS  Google Scholar 

  68. Thines, R., Mubarak, N., Nizamuddin, S., Sahu, J., Abdullah, E., Ganesan, P.: Application potential of carbon nanomaterials in water and wastewater treatment: a review. J. Taiwan Inst. Chem. Eng. (2017)

    Google Scholar 

  69. Kar, S., Subramanian, M., Pal, A., Ghosh, A., Bindal, R., Prabhakar, S., et al.: Preparation, characterisation and performance evaluation of anti-biofouling property of carbon nanotube-polysulfone nanocomposite membranes. In: AIP Conference Proceedings: AIP, pp. 181–185 (2013)

    Google Scholar 

  70. Corry, B.: Water and ion transport through functionalised carbon nanotubes: implications for desalination technology. Energy Environ. Sci. 4, 751–759 (2011)

    Article  CAS  Google Scholar 

  71. Kong, H., Gao, C., Yan, D.: Controlled functionalization of multiwalled carbon nanotubes by in situ atom transfer radical polymerization. J. Am. Chem. Soc. 126, 412–413 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Acknowledgements for “Carbon Nanotubes for Water Disinfection”: Financial support from the University of Malaya BKP grant (BK095-2016) and UM Research Grant–Innovation Technology (RP045-17AET) are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bey Fen Leo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Leo, B.F., Lah, N.A.C., Samykano, M., Pulingam, T., Tang, SS., Das Tuhi, S. (2018). Disinfection. In: Das, R. (eds) Carbon Nanotubes for Clean Water. Carbon Nanostructures. Springer, Cham. https://doi.org/10.1007/978-3-319-95603-9_7

Download citation

Publish with us

Policies and ethics