Skip to main content

Adsorption

  • Chapter
  • First Online:
Carbon Nanotubes for Clean Water

Part of the book series: Carbon Nanostructures ((CARBON))

Abstract

Removing of wastewater pollutants by novel adsorption techniques is urgent as they are continuously defiling the limited freshwater resources, seriously affecting the terrestrial, ecosystems, aquatic, and aerial flora and fauna. Emerging carbon nanotube (CNT)-based adsorbent materials are effective for efficient handling of wastewater pollutants. This chapter describes the mechanisms of CNT, and its forces to host the wastewater pollutants. Such details would help to considerably improve the performance of classical adsorbent technologies. Additionally, the functionalization of CNT and adsorption isotherms are considered as they have been significantly used for achieving maximum adsorption capacity and disclosing the adsorption phenomena of CNT, respectively. Some multifunctional CNT-based adsorbent are also discussed with reusability phenomena which need to be addressed before large-scale implementation of CNTs for water purification. Some suggestions and research clues are given to inform investigators of potentially disruptive CNT technologies and/or optimize the CNT sorption performances that have to be investigated in more detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References and Future Readings

  1. Das, R.: Nanohybrid Catalyst based on Carbon Nanotube: A Step-By-Step Guideline from Preparation to Demonstration. Springer (2017)

    Google Scholar 

  2. Das, R., Vecitis, C.D., Schulze, A., Cao, B., Ismail, A.F., Lu, X., Chen, J., Ramakrishna, S.: Recent advances in nanomaterials for water protection and monitoring, Chem. Soc. Rev. (2017)

    Google Scholar 

  3. Langmuir, I.: The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40, 1361–1403 (1918)

    Article  CAS  Google Scholar 

  4. Freundlich, H.: Uber die Adsorption in Losungen Z. Phys. Chem. 57, 385–470 (1906)

    CAS  Google Scholar 

  5. Halsey, G.: Physical adsorption on non-uniform surfaces. J. Chem. Phys. 16, 931–937 (1948)

    Article  CAS  Google Scholar 

  6. Brunauer, S., Emmett, P.H., Teller, E.: Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309–319 (1938)

    Article  CAS  Google Scholar 

  7. Henderson, A.P., Seetohul, L.N., Dean, A.K., Russell, P., Pruneanu, S., Ali, Z.: A novel Isotherm modeling self-assembled monolayer adsorption and structural changes. Langmuir 25, 931–938 (2009)

    Article  CAS  Google Scholar 

  8. Giles, C., MacEwan, T., Nakhwa, S., Smith, D.: Studies in adsorption. Part XI. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids, J. Chem. Soc. (Resumed) 3973–3993 (1960)

    Google Scholar 

  9. SY Elovich, O.G.L.: Theory of adsorption from solutions of non electrolytes on solid: (I) equation adsorption from solutions and the analysis of its simplest form, (II) verification of the equation of adsorption isotherm from solutions, zv. Akad. Nauk. SSSR, Otd. Khim. Nauk 2, 209 (1962)

    Google Scholar 

  10. Lagergren, S.: About the Theory of So- Called Adsorption of Soluble Substances. Kunglia Svenska Vetenskapsakademiens 24, 1–39 (1898)

    Google Scholar 

  11. Ali, I.: New generation adsorbents for water treatment. Chem. Rev. 112, 5073–5091 (2012)

    Article  CAS  Google Scholar 

  12. Ntim, S.A., Mitra, S.: Adsorption of arsenic on multiwall carbon nanotube–zirconia nanohybrid for potential drinking water purification. J. Colloid Interf. Sci. 375, 154–159 (2012)

    Article  CAS  Google Scholar 

  13. Qiu, H., Lv, L., Pan, B.-C., Zhang, Q.-J., Zhang, W.-M., Zhang, Q.-X.: Critical review in adsorption kinetic models. J. Zhejiang Uni. Sci. A 10, 716–724 (2009)

    Article  CAS  Google Scholar 

  14. Ho, Y.S., McKay, G.: Pseudo-second order model for sorption processes. Process. Biochem. 34, 451–465 (1999)

    Article  CAS  Google Scholar 

  15. Wang, F., Sun, W., Pan, W., Xu, N.: Adsorption of sulfamethoxazole and 17β-estradiol by carbon nanotubes/CoFe 2 O 4 composites. Chem. Eng. J. 274, 17–29 (2015)

    Article  CAS  Google Scholar 

  16. Wilczak, A., Keinath, T.M.: Kinetics of sorption and desorption of copper (II) and lead (II) on activated carbon. Water Environ. Res. 65, 238–244 (1993)

    Article  CAS  Google Scholar 

  17. Zhang, S., Shao, T., Kose, H.S., Karanfil, T.: Adsorption kinetics of aromatic compounds on carbon nanotubes and activated carbons. Environ. Toxicol. Chem. 31, 79–85 (2012)

    Article  CAS  Google Scholar 

  18. Chowdhury, Z.Z., Hamid, S.B.A., Das, R., Hasan, M.R., Zain, S.M., Khalid, K., Uddin, M.N.: Preparation of carbonaceous adsorbents from lignocellulosic biomass and their use in removal of contaminants from aqueous solution. BioResources 8, 6523–6555 (2013)

    Article  Google Scholar 

  19. Das, R., Ali, M.E., Hamid, S.B.A., Ramakrishna, S., Chowdhury, Z.Z.: Carbon nanotube membranes for water purification: a bright future in water desalination. Desalination 336, 97–109 (2014)

    Article  CAS  Google Scholar 

  20. Das, R., Hamid, S.B.A., Ali, M.E., Ismail, A.F., Annuar, M., Ramakrishna, S.: Multifunctional carbon nanotubes in water treatment: the present, past and future. Desalination 354, 160–179 (2014)

    Article  CAS  Google Scholar 

  21. Ren, X., Chen, C., Nagatsu, M., Wang, X.: Carbon nanotubes as adsorbents in environmental pollution management: a review. Chem. Eng. J. 170, 395–410 (2011)

    Article  CAS  Google Scholar 

  22. Zhang, S., Shao, T., Kose, H.S., Karanfil, T.: Adsorption of aromatic compounds by carbonaceous adsorbents: a comparative study on granular activated carbon, activated carbon fiber, and carbon nanotubes. Environ. Sci. Technol. 44, 6377–6383 (2010)

    Article  CAS  Google Scholar 

  23. Bhusan, B.: Springer handbook of nanotechnology, in. Springer Science, New York (2003)

    Google Scholar 

  24. Sun, F., Gao, J., Zhu, Y., Chen, G., Wu, S., Qin, Y.: Adsorption of SO2 by typical carbonaceous material: a comparative study of carbon nanotubes and activated carbons. Adsorption 19, 959–966 (2013)

    Article  CAS  Google Scholar 

  25. Yang, Q.-H., Hou, P.-X., Bai, S., Wang, M.-Z., Cheng, H.-M.: Adsorption and capillarity of nitrogen in aggregated multi-walled carbon nanotubes. Chem. Phys. Lett. 345, 18–24 (2001)

    Article  CAS  Google Scholar 

  26. Gotovac, S., Honda, H., Hattori, Y., Takahashi, K., Kanoh, H., Kaneko, K.: Effect of nanoscale curvature of single-walled carbon nanotubes on adsorption of polycyclic aromatic hydrocarbons. Nano Lett. 7, 583–587 (2007)

    Article  CAS  Google Scholar 

  27. Pan, B., Lin, D., Mashayekhi, H., Xing, B.: Adsorption and hysteresis of bisphenol A and 17α-ethinyl estradiol on carbon nanomaterials. Environ. Sci. Technol. 42, 5480–5485 (2008)

    Article  CAS  Google Scholar 

  28. Das, R., Hamid, S.B.A., Ali, M., Annuar, M., Samsudin, E.M.B., Bagheri, S.: Covalent functionalization schemes for tailoring solubility of multi-walled carbon nanotubes in water and acetone solvents. Sci. Adv. Mater. 7, 2726–2737 (2015)

    Article  CAS  Google Scholar 

  29. Ali, M., Das, R., Maamor, A., Hamid, S.B.A.: Multifunctional carbon nanotubes (CNTs): a new dimension in environmental remediation. Adv. Mater. Res. 832, 328–332 (2014)

    Article  CAS  Google Scholar 

  30. Das, R.: Nanobiohybrid Preparation, in: Nanohybrid Catalyst based on Carbon Nanotube, pp. 105–128. Springer (2017)

    Google Scholar 

  31. Das, R., Hamid, S.B.A., Annuar, M.S.M.: Highly efficient and stable novel nanobiohybrid catalyst to avert 3, 4-dihydroxybenzoic acid pollutant in water. Sci. Rep. 6, 33572 (2016)

    Article  CAS  Google Scholar 

  32. Sitko, R., Zawisza, B., Malicka, E.: Modification of carbon nanotubes for preconcentration, separation and determination of trace-metal ions, TrAC. Trends Anal. Chem. 37, 22–31 (2012)

    Article  CAS  Google Scholar 

  33. Yang, S., Hu, J., Chen, C., Shao, D., Wang, X.: Mutual effects of Pb (II) and humic acid adsorption on multiwalled carbon nanotubes/polyacrylamide composites from aqueous solutions. Environ. Sci. Technol. 45, 3621–3627 (2011)

    Article  CAS  Google Scholar 

  34. Chi, W., Shi, H., Shi, W., Guo, Y., Guo, T.: 4-Nitrophenol surface molecularly imprinted polymers based on multiwalled carbon nanotubes for the elimination of paraoxon pollution. J. Hazard. Mater. 227, 243–249 (2012)

    Article  CAS  Google Scholar 

  35. Gao, W., Sun, X., Chen, T., Lin, Y., Chen, Y., Lu, F., Chen, Z.: Preparation of cyano-functionalized multiwalled carbon nanotubes as solid-phase extraction sorbent for preconcentration of phenolic compounds in environmental water. J. Sep. Sci. 35, 1967–1976 (2012)

    Article  CAS  Google Scholar 

  36. Anitha, K., Namsani, S., Singh J.K.: Removal of heavy metal ions using functionalized single-walled carbon nanotube: a molecular dynamics study. J. Phys. Chem. A (2015)

    Google Scholar 

  37. Corazza, M.Z., Somera, B.F., Segatelli, M.G., Tarley, C.R.T.: Grafting 3-mercaptopropyl trimethoxysilane on multi-walled carbon nanotubes surface for improving on-line cadmium (II) preconcentration from water samples. J. Hazard. Mater. 243, 326–333 (2012)

    Article  CAS  Google Scholar 

  38. Bandaru, N.M., Reta, N., Dalal, H., Ellis, A.V., Shapter, J., Voelcker, N.H.: Enhanced adsorption of mercury ions on thiol derivatized single wall carbon nanotubes. J. Hazard. Mater. 261, 534–541 (2013)

    Article  CAS  Google Scholar 

  39. Hu, Z.-J., Cui, Y., Liu, S., Yuan, Y., Gao, H.-W.: Optimization of ethylenediamine-grafted multiwalled carbon nanotubes for solid-phase extraction of lead cations. Environ. Sci. Pollut. Res. 19, 1237–1244 (2012)

    Article  CAS  Google Scholar 

  40. Ma, J., Yu, F., Zhou, L., Jin, L., Yang, M., Luan, J., Tang, Y., Fan, H., Yuan, Z., Chen, J.: Enhanced adsorptive removal of methyl orange and methylene blue from aqueous solution by alkali-activated multiwalled carbon nanotubes. ACS Appl. Mater. Interfaces. 4, 5749–5760 (2012)

    Article  CAS  Google Scholar 

  41. Yu, F., Wu, Y., Li, X., Ma, J.: Kinetic and thermodynamic studies of toluene, ethylbenzene, and m-xylene adsorption from aqueous solutions onto KOH-activated multiwalled carbon nanotubes. J. Agric. Food Chem. 60, 12245–12253 (2012)

    Article  CAS  Google Scholar 

  42. Kemp, K.C., Seema, H., Saleh, M., Le, N.H., Mahesh, K., Chandra, V., Kim, K.S.: Environmental applications using graphene composites: water remediation and gas adsorption. Nanoscale 5, 3149–3171 (2013)

    Article  CAS  Google Scholar 

  43. Ogoyi, D., Nguu, E., Mwita, C., Shiundu, P.: Determination of heavy metal content in water, sediment and microalgae from Lake Victoria. East Africa Open Environ. Eng. J. 4, 156–161 (2011)

    Article  CAS  Google Scholar 

  44. Sarkar, C., Bora, C., Dolui, S.K.: Selective Dye Adsorption by pH Modulation on Amine-Functionalized Reduced Graphene Oxide-Carbon Nanotube Hybrid. Ind. Eng. Chem. Res. 53, 16148–16155 (2014)

    Article  CAS  Google Scholar 

  45. Vadahanambi, S., Lee, S.-H., Kim, W.-J., Oh, I.-K.: Arsenic removal from contaminated water using three-dimensional graphene-carbon nanotube-iron oxide nanostructures. Environ. Sci. Technol. 47, 10510–10517 (2013)

    CAS  Google Scholar 

  46. Kotal, M., Bhowmick, A.K.: Multifunctional hybrid materials based on carbon nanotube chemically bonded to reduced graphene oxide. J. Phys. Chem. C 117, 25865–25875 (2013)

    Article  CAS  Google Scholar 

  47. Madrakian, T., Afkhami, A., Ahmadi, M., Bagheri, H.: Removal of some cationic dyes from aqueous solutions using magnetic-modified multi-walled carbon nanotubes. J. Hazard. Mater. 196, 109–114 (2011)

    Article  CAS  Google Scholar 

  48. Azizian, S., Haerifar, M., Bashiri, H.: Adsorption of methyl violet onto granular activated carbon: equilibrium, kinetics and modeling. Chem. Eng. J. 146, 36–41 (2009)

    Article  CAS  Google Scholar 

  49. Yang, S., Han, C., Wang, X., Nagatsu, M.: Characteristics of cesium ion sorption from aqueous solution on bentonite-and carbon nanotube-based composites. J. Hazard. Mater. 274, 46–52 (2014)

    Article  CAS  Google Scholar 

  50. Yang, S., Shao, D., Wang, X., Hou, G., Nagatsu, M., Tan, X., Ren, X., Yu, J.: Design of chitosan-grafted carbon nanotubes: evaluation of How the–OH functional group affects Cs + adsorption. Marine Drugs 13, 3116–3131 (2015)

    Article  CAS  Google Scholar 

  51. Wang, W., Ma, H., Zheng, W., An, D., Na, C.: Multifunctional and Recollectable Carbon Nanotube Ponytails for Water Purification, ACS App. Mater. Inter. (2014)

    Google Scholar 

  52. Yu, F., Ma, J., Wang, J., Zhang, M., Zheng, J.: Magnetic iron oxide nanoparticles functionalized multi-walled carbon nanotubes for toluene, ethylbenzene and xylene removal from aqueous solution. Chemosphere 146, 162–172 (2016)

    Article  CAS  Google Scholar 

  53. Rao, W., Cai, R., Yin, Y., Long, F., Zhang, Z.: Magnetic dummy molecularly imprinted polymers based on multi-walled carbon nanotubes for rapid selective solid-phase extraction of 4-nonylphenol in aqueous samples. Talanta 128, 170–176 (2014)

    Article  CAS  Google Scholar 

  54. Xu, L., Li, J., Zhang, M.: Adsorption characteristics of a novel carbon-nanotube-based composite adsorbent toward organic pollutants. Ind. Eng. Chem. Res. 54, 2379–2384 (2015)

    Article  CAS  Google Scholar 

  55. Shan, D., Deng, S., Zhao, T., Yu, G., Winglee, J., Wiesner, M.R.: Preparation of regenerable granular carbon nanotubes by a simple heating-filtration method for efficient removal of typical pharmaceuticals. Chem. Eng. J. 294, 353–361 (2016)

    Article  CAS  Google Scholar 

  56. Wei, H., Deng, S., Huang, Q., Nie, Y., Wang, B., Huang, J., Yu, G.: Regenerable granular carbon nanotubes/alumina hybrid adsorbents for diclofenac sodium and carbamazepine removal from aqueous solution. Water Res. 47, 4139–4147 (2013)

    Article  CAS  Google Scholar 

  57. Yang, C., Liu, P.: Chitosan/functionalized multiwalled carbon nanotubes multilayer hollow microspheres prepared via layer-by-layer assembly technique. Ind. Eng. Chem. Res. 51, 13346–13353 (2012)

    Article  CAS  Google Scholar 

  58. Gao, L., Yin, H., Mao, X., Zhu, H., Xiao, W., Wang, D.: Directing carbon nanotubes from aqueous phase to o/w interface for heavy metal uptaking, Environ. Sci. Pollu. Res. 1–8 (2015)

    Google Scholar 

  59. Wang, H., Ma, H., Zheng, W., An, D., Na, C.: Multifunctional and recollectable carbon nanotube ponytails for water purification. ACS Appl. Mater. Interfaces. 6, 9426–9434 (2014)

    Article  CAS  Google Scholar 

  60. Indrawirawan, S., Sun, H., Duan, X., Wang, S.: Nanocarbons in different structural dimensions (0–3D) for phenol adsorption and metal-free catalytic oxidation. Appl. Catal. B 179, 352–362 (2015)

    Article  CAS  Google Scholar 

  61. Patiño, Y., Díaz, E., Ordóñez, S.: Performance of different carbonaceous materials for emerging pollutants adsorption. Chemosphere 119, S124–S130 (2015)

    Article  CAS  Google Scholar 

  62. Beless, B., Rifai, H.S., Rodrigues, D.F.: Efficacy of carbonaceous materials for sorbing polychlorinated biphenyls from aqueous solution. Environ. Sci. Technol. 48, 10372–10379 (2014)

    Article  CAS  Google Scholar 

  63. Smith, S.C., Ahmed, F., Gutierrez, K.M., Rodrigues, D.F.: A comparative study of lysozyme adsorption with graphene, graphene oxide, and single-walled carbon nanotubes: Potential environmental applications. Chem. Eng. J. 240, 147–154 (2014)

    Article  CAS  Google Scholar 

  64. Apul, O.G., Wang, Q., Zhou, Y., Karanfil, T.: Adsorption of aromatic organic contaminants by graphene nanosheets: comparison with carbon nanotubes and activated carbon. Water Res. 47, 1648–1654 (2013)

    Article  CAS  Google Scholar 

  65. Velzeboer, I., Kwadijk, C., Koelmans, A.: Strong sorption of PCBs to nanoplastics, microplastics, carbon nanotubes, and fullerenes. Environ. Sci. Technol. 48, 4869–4876 (2014)

    Article  CAS  Google Scholar 

  66. Gupta, V.K., Saleh, T.A.: Sorption of pollutants by porous carbon, carbon nanotubes and fullerene-An overview. Environ. Sci. Pollut. Res. 20, 2828–2843 (2013)

    Article  CAS  Google Scholar 

  67. Zhang, L., Fang, P., Yang, L., Zhang, J., Wang, X.: Rapid method for the separation and recovery of endocrine-disrupting compound bisphenol AP from wastewater. Langmuir 29, 3968–3975 (2013)

    Article  CAS  Google Scholar 

  68. Yan, X., Shi, B., Lu, J., Feng, C., Wang, D., Tang, H.: Adsorption and desorption of atrazine on carbon nanotubes. J. Colloid Interf. Sci. 321, 30–38 (2008)

    Article  CAS  Google Scholar 

  69. Cho, H.-H., Huang, H., Schwab, K.: Effects of solution chemistry on the adsorption of ibuprofen and triclosan onto carbon nanotubes. Langmuir 27, 12960–12967 (2011)

    Article  CAS  Google Scholar 

  70. Zhou, S., Shao, Y., Gao, N., Deng, J., Tan, C.: Equilibrium, Kinetic, and Thermodynamic Studies on the Adsorption of Triclosan onto Multi-Walled Carbon Nanotubes. CLEAN–Soil Air Water 41, 539–547 (2013)

    Article  CAS  Google Scholar 

  71. Lu, Y., Jiang, M., Wang, C., Wang, Y., Yang, W.: Effects of matrix and functional groups on tylosin adsorption onto resins and carbon nanotubes. Water Air Soil Pollut. 224, 1–12 (2013)

    Google Scholar 

  72. Rambabu, N., Guzman, C.A., Soltan, J., Himabindu, V.: Adsorption characteristics of atrazine on granulated activated carbon and carbon nanotubes. Chem. Eng. Technol. 35, 272–280 (2012)

    Article  CAS  Google Scholar 

  73. Chen, G.-C., Shan, X.-Q., Wang, Y.-S., Pei, Z.-G., Shen, X.-E., Wen, B., Owens, G.: Effects of copper, lead, and cadmium on the sorption and desorption of atrazine onto and from carbon nanotubes. Environ. Sci. Technol. 42, 8297–8302 (2008)

    Article  CAS  Google Scholar 

  74. Chen, G.-C., Shan, X.-Q., Zhou, Y.-Q., Shen, X.-E., Huang, H.-L., Khan, S.U.: Adsorption kinetics, isotherms and thermodynamics of atrazine on surface oxidized multiwalled carbon nanotubes. J. Hazard. Mater. 169, 912–918 (2009)

    Article  CAS  Google Scholar 

  75. Fang, Q., Chen, B.: Adsorption of perchlorate onto raw and oxidized carbon nanotubes in aqueous solution. Carbon 50, 2209–2219 (2012)

    Article  CAS  Google Scholar 

  76. Sotelo, J.L., Rodríguez, A.R., Mateos, M.M., Hernández, S.D., Torrellas, S.A., Rodríguez, J.G.: Adsorption of pharmaceutical compounds and an endocrine disruptor from aqueous solutions by carbon materials. J. Environ. Sci. Health Part B 47, 640–652 (2012)

    Article  CAS  Google Scholar 

  77. Chen, G.-C., Shan, X.-Q., Pei, Z.-G., Wang, H., Zheng, L.-R., Zhang, J., Xie, Y.-N.: Adsorption of diuron and dichlobenil on multiwalled carbon nanotubes as affected by lead. J. Hazard. Mater. 188, 156–163 (2011)

    Article  CAS  Google Scholar 

  78. Al-Khateeb, L.A., Obaid, A.Y., Asiri, N.A., Salam, M.A.: Adsorption behavior of estrogenic compounds on carbon nanotubes from aqueous solutions: Kinetic and thermodynamic studies. J. Ind. Eng. Chem. 20, 916–924 (2014)

    Article  CAS  Google Scholar 

  79. Li, Y.-H., Wang, S., Wei, J., Zhang, X., Xu, C., Luan, Z., Wu, D., Wei, B.: Lead adsorption on carbon nanotubes. Chem. Phys. Lett. 357, 263–266 (2002)

    Article  CAS  Google Scholar 

  80. Long, R.Q., Yang, R.T.: Carbon nanotubes as superior sorbent for dioxin removal. J. Am. Chem. Soc. 123, 2058–2059 (2001)

    Article  CAS  Google Scholar 

  81. Li, Y.-H., Wang, S., Luan, Z., Ding, J., Xu, C., Wu, D.: Adsorption of cadmium (II) from aqueous solution by surface oxidized carbon nanotubes. Carbon 41, 1057–1062 (2003)

    Article  CAS  Google Scholar 

  82. Lu, C., Liu, C.: Removal of nickel (II) from aqueous solution by carbon nanotubes. J. Chem. Technol. Biotechnol. 81, 1932–1940 (2006)

    Article  CAS  Google Scholar 

  83. Wang, H., Zhou, A., Peng, F., Yu, H., Yang, J.: Mechanism study on adsorption of acidified multiwalled carbon nanotubes to Pb (II). J. Colloid Interface Sci. 316, 277–283 (2007)

    Article  CAS  Google Scholar 

  84. Wang, H., Zhou, A., Peng, F., Yu, H., Chen, L.: Adsorption characteristic of acidified carbon nanotubes for heavy metal Pb (II) in aqueous solution. Mater. Sci. Eng., A 466, 201–206 (2007)

    Article  CAS  Google Scholar 

  85. Li, Y.-H., Di, Z., Ding, J., Wu, D., Luan, Z., Zhu, Y.: Adsorption thermodynamic, kinetic and desorption studies of Pb 2 + on carbon nanotubes. Water Res. 39, 605–609 (2005)

    Article  CAS  Google Scholar 

  86. Lu, C., Liu, C., Rao, G.P.: Comparisons of sorbent cost for the removal of Ni 2 + from aqueous solution by carbon nanotubes and granular activated carbon. J. Hazard. Mater. 151, 239–246 (2008)

    Article  CAS  Google Scholar 

  87. Li, X., Chen, S., Fan, X., Quan, X., Tan, F., Zhang, Y., Gao, J.: Adsorption of ciprofloxacin, bisphenol and 2-chlorophenol on electrospun carbon nanofibers: In comparison with powder activated carbon. J. Colloid Interface Sci. 447, 120–127 (2015)

    Article  CAS  Google Scholar 

  88. Stumm, W., Morgan, J.J., Aquatic chemistry: chemical equilibria and rates in natural waters, Wiley (2012)

    Google Scholar 

  89. Engates, K.E., Shipley, H.J.: Adsorption of Pb Cd, Cu, Zn, and Ni to titanium dioxide nanoparticles: effect of particle size, solid concentration, and exhaustion. Environ. Sci. Pollu. Res. 18, 386–395 (2011)

    Article  CAS  Google Scholar 

  90. Cheng, J., Chang, P.R., Zheng, P., Ma, X.: Characterization of magnetic carbon nanotube–cyclodextrin composite and its adsorption of dye. Ind. Eng. Chem. Res. 53, 1415–1421 (2014)

    Article  CAS  Google Scholar 

  91. Saleh, N.B., Pfefferle, L.D., Elimelech, M.: Influence of biomacromolecules and humic acid on the aggregation kinetics of single-walled carbon nanotubes. Environ. Sci. Technol. 44, 2412–2418 (2010)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rasel Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Das, R., Das Tuhi, S., Zaidi, S.M.J. (2018). Adsorption. In: Das, R. (eds) Carbon Nanotubes for Clean Water. Carbon Nanostructures. Springer, Cham. https://doi.org/10.1007/978-3-319-95603-9_4

Download citation

Publish with us

Policies and ethics