Skip to main content

Hybrid Imaging and Radionuclide Therapy for Thyroid Disorders

  • Chapter
  • First Online:
Nuclear Medicine Textbook

Abstract

The thyroid gland is a butterfly-shaped organ located anteriorly to the trachea at the level of the second and third tracheal rings. It consists of two lobes connected by the isthmus in the midline. Anteriorly, its surface is convex; posteriorly, it is concave. The gland’s upper extremities are known as the upper poles. Similarly, the lower extremities of the lateral lobes are known as the lower poles (or base of the lobe). The weight of the thyroid of the normal non-goitrous adult is 6–20 g depending on the body size and iodine supply. From upper pole to base, the thyroid lobes usually measure 4 cm. Their width is 15–20 mm, and their thickness is 20–39 mm. The isthmus is 12–15 mm high, lies across the trachea anteriorly just below the level of the cricoid cartilage, and connects the two lobes. The shape and attachments of the organ and its relationship to the trachea are important in examination and diagnosis and from the point of view of pressure symptoms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maenhaut C, Christophe D, Vassart G, et al. Ontogeny, anatomy, metabolism and physiology of the thyroid. [Updated 2015 Jul 15]. In: De Groot LJ, Chrousos G, Dungan K, et al, eds. Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; 2000. Available from: https://www.ncbi.nlm.nih.gov/books/NBK285554/

  2. Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, et al. 2015 American Thyroid Association Management Guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid. 2016;26:1–133.

    PubMed  PubMed Central  Google Scholar 

  3. Popoveniuc G, Jonklaas J. Thyroid nodules. Med Clin North Am. 2012;96:329–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Kravets I. Hyperthyroidism: diagnosis and treatment. Am Fam Physician. 2016;93:363–70.

    PubMed  Google Scholar 

  5. Carlè A, Bulow Pedersen I, Knudsen N, et al. Epidemiology of subtypes of hyperthyroidism in Denmark. A population-based study. Eur J Endocrinol. 2011;164:801–9.

    PubMed  Google Scholar 

  6. Ferrari SM, Fallahi P, Antonelli A, Benvenga S. Environmental issues in thyroid diseases. Front Endocrinol. 2017;8:50. https://doi.org/10.3389/fendo.2017.00050. eCollection 2017.

    Article  Google Scholar 

  7. Menconi F, Marcocci C, Marinò M. Diagnosis and classification of Graves’ disease. Autoimmun Rev. 2014;13:398–402.

    PubMed  Google Scholar 

  8. Antonelli A, Ferrari SM, Corrado A, Di Domenicantonio A, Fallahi P. Autoimmune thyroid disorders. Autoimmun Rev. 2015;14:174–80.

    CAS  PubMed  Google Scholar 

  9. Caturegli P, De Remigis A, Rose NR. Hashimoto thyroiditis: clinical and diagnostic criteria. Autoimmun Rev. 2014;13:391–7.

    CAS  PubMed  Google Scholar 

  10. Shrestha RT, Hennessey J. Acute and subacute, and Riedel’s thyroiditis. [Updated 2015 Dec 8]. In: De Groot LJ, Chrousos G, Dungan K, et al., editors. Endotext [Internet]. South Dartmouth (MA): MDText.com, Inc.; 2000. Available from: https://www.ncbi.nlm.nih.gov/books/NBK285553/

  11. Dean DS. Thyroiditis. In: Baskin HJ, Duick DS, Levine RA, editors. Thyroid ultrasound and ultrasound-guided FNA. 2nd ed. Boston, MA: Springer US; 2008. p. 63–75.

    Google Scholar 

  12. Garberoglio S, Testori O. Role of nuclear medicine in the diagnosis of benign thyroid diseases. Front Horm Res. 2016;45:24–36.

    PubMed  Google Scholar 

  13. Metso S, Jaatinen P, Huhtala H, Luukkaala T, Oksala H, Salmi J. Long-term follow-up study of radioiodine treatment of hyperthyroidism. Clin Endocrinol (Oxf). 2004;61:641–8.

    CAS  Google Scholar 

  14. Sridama V, Mccormick M, Kaplan EL, Fauchet R, Degroot LJ. Long-term follow-up study of compensated low-dose 131I therapy for Graves’ disease. N Engl J Med. 1984;311:426–32.

    CAS  PubMed  Google Scholar 

  15. Bahn RS, Burch HB, Cooper DS, et al. Hyperthyroidism and other causes of thyrotoxicosis: management guidelines of the American Thyroid Association and American Association of Clinical Endocrinologists. Thyroid. 2011;21:593–646.

    Google Scholar 

  16. Farrar JJ, Toft AD. Iodine-131 treatment of hyperthyroidism: current issues. Clin Endocrinol (Oxf). 1991;35:207–12.

    CAS  Google Scholar 

  17. Howarth D, Epstein M, Lan L, Tan P, Booker J. Determination of the optimal minimum radioiodine dose in patients with Graves’ disease: a clinical outcome study. Eur J Nucl Med. 2001;28:1489–95.

    CAS  PubMed  Google Scholar 

  18. Orsini F, et al. Personalization of radioiodine treatment for Graves’ disease: a prospective, randomized study with a novel method for calculating the optimal 131I-iodide activity based on target reduction of thyroid mass. Q J Nucl Med Mol Imaging. 2012;56:496–502.

    CAS  PubMed  Google Scholar 

  19. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66:7–30.

    PubMed  Google Scholar 

  20. Brierley JD, Gospodarowicz MK, Wittekind C. TNM classification of malignant tumours. 8th ed. Weinheim, Germany: Wiley; 2017. p. 69–71.

    Google Scholar 

  21. Cooper DS, Doherty GM, Haugen BR, et al. Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid. 2009;19:1167–214.

    PubMed  Google Scholar 

  22. Tuttle RM, Tala H, Shah J, et al. Estimating risk of recurrence in differentiated thyroid cancer after total thyroidectomy and radioactive iodine remnant ablation: using response to therapy variables to modify the initial risk estimates predicted by the new American Thyroid Association staging system. Thyroid. 2010;20:1341–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Grimm D Current knowledge in thyroid cancer—from bench to bedside. Int J Mol Sci. 2017;18(7). pii: E1529. doi: https://doi.org/10.3390/ijms18071529

  24. Neff RL, Farrar WB, Kloos RT, Burman KD. Anaplastic thyroid cancer. Endocrinol Metab Clin N Am. 2008;37:525–38.

    Google Scholar 

  25. Samaan NA, Ordonez NG. Uncommon types of thyroid cancer. Endocrinol Metab Clin N Am. 1990;19:637–48.

    CAS  Google Scholar 

  26. Rusinek D, Chmielik E, Krajewska J, Jarzab M, Oczko-Wojciechowska M, Czarniecka A, Jarzab B. Current advances in thyroid cancer management. Are we ready for the epidemic rise of diagnoses? Int J Mol Sci. 2017;18(8). pii: E1817. doi: https://doi.org/10.3390/ijms18081817

  27. Li Q, Lin X, Shao Y, Xiang F, Samir AE. Imaging and screening of thyroid cancer. Radiol Clin North Am. 2017;55:1261–71.

    PubMed  Google Scholar 

  28. Rago T, Vitti P, Chiovato L, et al. Role of conventional ultrasonography and color flow-Doppler sonography in predicting malignancy in “cold” thyroid nodules. Eur J Endocrinol. 1998;138:41–6.

    CAS  PubMed  Google Scholar 

  29. Frates MCM, Benson CBC, Charboneau JWJ, et al. Management of thyroid nodules detected at US Society of Radiologists in Ultrasound consensus conference statement. Radiology. 2005;237:794–800.

    PubMed  Google Scholar 

  30. Cibas ES, Ali SZ. The Bethesda system for reporting thyroid cytopathology. Am J Clin Pathol. 2009;132:658–65.

    PubMed  Google Scholar 

  31. Eszlinger M, Lau L, Ghaznavi S, Symonds C, Chandarana SP, Khalil M, Paschke R. Molecular profiling of thyroid nodule fine-needle aspiration cytology. Nat Rev Endocrinol. 2017;13:415–24.

    CAS  PubMed  Google Scholar 

  32. Lazar V, Bidart JM, Caillou B, Mahé C, Lacroix L, Filetti S, Schlumberger M. Expression of the Na+/I symporter gene in human thyroid tumors: a comparison study with other thyroid-specific genes. J Clin Endocrinol Metab. 1999;84:3228–34.

    CAS  PubMed  Google Scholar 

  33. Giovanella S, Suriano S, Maffioli M, Ceriani M. 18FDG-positron emission tomography/computed tomography (PET/CT) scanning in thyroid nodules with nondiagnostic cytology. Clin Endocrinol. 2011;74:644–8.

    Google Scholar 

  34. Piccardo A, Puntoni M, Treglia G, Foppiani L, Bertagna F, Paparo F, et al. Thyroid nodules with indeterminate cytology: prospective comparison between 18F-FDG-PET/CT, multiparametric neck ultrasonography, 99mTc-MIBI scintigraphy and histology. Eur J Endocrinol. 2016;174:693–703.

    CAS  PubMed  Google Scholar 

  35. Nayan S, Ramakrishna J, Gupta MK. The proportion of malignancy in incidental thyroid lesions on 18F-FDG PET study: a systematic review and meta-analysis. Otolaryngol Head Neck Surg. 2014;151:190–200.

    PubMed  Google Scholar 

  36. Agrawal K, Weaver J, Ul-Hassan F, Jeannon JP, Simo R, Carroll P, et al. Incidence and significance of incidental focal thyroid uptake on 18F-FDG PET study in a large patient cohort: retrospective single-centre experience in the United Kingdom. Eur Thyroid J. 2015;4:115–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Palaniswamy SS, Subramanyam P. Diagnostic utility of PETCT in thyroid malignancies: an update. Ann Nucl Med. 2013;27:681–93.

    CAS  PubMed  Google Scholar 

  38. Chiacchio S, Lorenzoni A, Boni G, Rubello D, Elisei R, Mariani G. Anaplastic thyroid cancer: prevalence, diagnosis and treatment. Minerva Endocrinol. 2008;33:341–57.

    CAS  PubMed  Google Scholar 

  39. Bodet-Milin C, Faivre-Chauvet A, Carlier T, Rauscher A, Bourgeois M, Cerato E, et al. Immuno-PET using anticarcinoembryonic antigen bispecific antibody and 68Ga-labeled peptide in metastatic medullary thyroid carcinoma: clinical optimization of the pretargeting parameters in a first-in-human trial. J Nucl Med. 2016;57:1505–11.

    CAS  PubMed  Google Scholar 

  40. Wells SA, Asa SL, Dralle H, Elisei R, Evans DB, Gagel RF, et al. Revised American Thyroid Association guidelines for the management of medullary thyroid carcinoma. Thyroid. 2015;25:567–610.

    PubMed  PubMed Central  Google Scholar 

  41. Bilimoria KY, Bentrem DJ, Ko CY, Stewart AK, Winchester DP, Talamonti MS, Sturgeon C. Extent of surgery affects survival for papillary thyroid cancer. Ann Surg. 2007;246:375–81.

    PubMed  PubMed Central  Google Scholar 

  42. Leboulleux S, Girard E, Rose M, et al. Ultrasound criteria of malignancy for cervical lymph nodes in patients followed up for differentiated thyroid cancer. J Clin Endocrinol Metab. 2007;92:3590–4.

    CAS  PubMed  Google Scholar 

  43. Sywak M, Cornford L, Roach P, Stalberg P, Sidhu S, Delbridge L. Routine ipsilateral level VI lymphadenectomy reduces postoperative thyroglobulin levels in papillary thyroid cancer. Surgery. 2006;140:1000–5.

    PubMed  Google Scholar 

  44. Palazzo FF, Gosnell J, Savio R, Reeve TS, Sidhu SB, Sywak MS, et al. Lymphadenectomy for papillary cancer: changes in practice over four decades. Eur J Surg Oncol. 2006;32:340–4.

    CAS  PubMed  Google Scholar 

  45. Carty SE, Cooper DS, Doherty GM, Duh QY, Kloos RT, Mandel SJ, et al. on behalf of ATA, AAES, AAOHNS, AHNS. Consensus statement on the terminology and classification of central neck dissection for thyroid cancer. Thyroid 2009;19:1153–1158

    Google Scholar 

  46. DeGroot LJ, Kaplan EL, McCormick M, Straus FH. Natural history, treatment, and course of papillary thyroid carcinoma. J Clin Endocrinol Metab. 1990;71:414–24.

    CAS  PubMed  Google Scholar 

  47. Maxon HR III, Englaro EE, et al. Radioiodine-131 therapy for well-differentiated thyroid cancer – a quantitative radiation dosimetric approach: outcome and validation in 85 patients. J Nucl Med. 1992;33:1132–6.

    PubMed  Google Scholar 

  48. Mazzaferri EL, Jhiang SM. Long-term impact of initial surgical and medical therapy on papillary and follicular thyroid cancer. Am J Med. 1994;97:418–28.

    CAS  PubMed  Google Scholar 

  49. Tubiana M, Schlumberger M, Rougier P, et al. Long-term results and prognostic factors in patients with differentiated thyroid carcinoma. Cancer. 1985;55:794–804.

    CAS  PubMed  Google Scholar 

  50. Baudin E, Travagli JP, Ropers J, et al. Microcarcinoma of the thyroid gland: the Gustave-Roussy Institute experience. Cancer. 1998;83:553–9.

    CAS  PubMed  Google Scholar 

  51. Simpson WJ, Panzarella T, Carruthers JS, Gospodarowicz MK, Sutcliffe SB. Papillary and follicular thyroid cancer: impact of treatment in 1578 patients. Int J Radiat Oncol Biol Phys. 1988;14:1063–75.

    CAS  PubMed  Google Scholar 

  52. Grebe SK, Hay ID. Follicular cell-derived thyroid carcinomas. Cancer Treat Res. 1997;89:91–140.

    CAS  PubMed  Google Scholar 

  53. Ruel E, Thomas S, Dinan M, Perkins JM, Roman SA, Sosa JA. Adjuvant radioactive iodine therapy is associated with improved survival for patients with intermediate-risk papillary thyroid cancer. J Clin Endocrinol Metab. 2015;100:1529–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Elisei R, Agate L, Viola D, Matrone A, Biagini A, Molinaro E. How to manage patients with differentiated thyroid cancer and a rising serum thyroglobulin level. Endocrinol Metab Clin North Am. 2014;43:331–44.

    PubMed  Google Scholar 

  55. Wang LY, Roman BR, Palmer FL, et al. Effectiveness of routine ultrasonographic surveillance of patients with low-risk papillary carcinoma of the thyroid. Surgery. 2016;159:1390–5.

    PubMed  Google Scholar 

  56. Remy H, Borget I, Leboulleux S, et al. 131I effective half-life and dosimetry in thyroid cancer patients. J Nucl Med. 2008;49:1445–50.

    CAS  PubMed  Google Scholar 

  57. Mazzaferri EL, Kloos RT. Clinical review 128: current approaches to primary therapy for papillary and follicular thyroid cancer. J Clin Endocrinol Metab. 2001;86:1447–63.

    CAS  PubMed  Google Scholar 

  58. Sgouros G, Song H, Ladenson PW, Wahl RL. Lung toxicity in radioiodine therapy of thyroid carcinoma: development of a dose-rate method and dosimetric implications of the 80-mCi rule. J Nucl Med. 2006;47:1977–84.

    CAS  PubMed  Google Scholar 

  59. Bolch WE, Bouchet LG, Robertson JS, et al. MIRD pamphlet No. 17: the dosimetry of nonuniform activity distributions—radionuclide S values at the voxel level. J Nucl Med. 1999;40(Suppl):11S–36S.

    CAS  PubMed  Google Scholar 

  60. Pacini F, Ladenson PW, Schlumberger M, et al. Radioiodine ablation of thyroid remnants after preparation with recombinant human thyrotropin in differentiated thyroid carcinoma: results of an international, randomized, controlled study. J Clin Endocrinol Metab. 2006;91:926–32.

    CAS  PubMed  Google Scholar 

  61. Schlumberger M, Catargi B, Borget I, et al. Strategies of radioiodine ablation in patients with low-risk thyroid cancer. N Engl J Med. 2012;366:1663–73.

    CAS  PubMed  Google Scholar 

  62. Mallick U, Harmer C, Yap B, et al. Ablation with low-dose radioiodine and thyrotropin alfa in thyroid cancer. N Engl J Med. 2012;366:1674–85.

    CAS  PubMed  Google Scholar 

  63. Silberstein EB, Alavi A, Balon HR, et al. Procedure guideline for therapy of thyroid disease with iodine-131. J Nucl Med. 2002;43:856–61.

    PubMed  Google Scholar 

  64. Park JT II, Hennessey JV. Two-week low iodine diet is necessary for adequate outpatient preparation for radioiodine rhTSH scanning in patients taking levothyroxine. Thyroid. 2004;14:57–63.

    CAS  PubMed  Google Scholar 

  65. Regalbuto C, Gullo D, Vigneri R, Pezzino V. Measurement of iodine before 131I in thyroid cancer. Lancet. 1994;344:1501–2.

    CAS  PubMed  Google Scholar 

  66. Rawson RW, Rall JE, Peacock W. Limitations in the treatment of cancer of the thyroid with radioactive iodine. Trans Assoc Am Phys. 1951;64:179–98.

    CAS  PubMed  Google Scholar 

  67. Bajén MT, Mañé S, Muñoz A, Ramòn GJ. Effect of diagnostic dose of 185 MBq 131I on postsurgical thyroid remnants. J Nucl Med. 2000;41:2038–42.

    PubMed  Google Scholar 

  68. McDougall IR, Iagaru A. Thyroid stunning: fact or fiction? Semin Nucl Med. 2011;41:105–12.

    PubMed  Google Scholar 

  69. Park HM. Stunned thyroid after high dose 131I imaging. Clin Nucl Med. 1992;17:501–2.

    CAS  PubMed  Google Scholar 

  70. Sisson JC, Avram AM, Lawson SA, Gauger PG, Doherty GM. The so-called stunning of thyroid tissue. J Nucl Med. 2006;47:1406–12.

    CAS  PubMed  Google Scholar 

  71. Park HM, Perkins OW, Edmondson JW, Schnute RB, Manatunga A. Influence of diagnostic radioiodines on the uptake of ablative dose of iodine-131. Thyroid. 1994;4:49–54.

    CAS  PubMed  Google Scholar 

  72. Muratet JP, Giraud P, Daver A, Minier JF, Gamelin E, Larra F. Predicting the efficacy of first iodine-131 treatment in differentiated thyroid carcinoma. J Nucl Med. 1997;38:1362–8.

    CAS  PubMed  Google Scholar 

  73. Nordén MM, Larsson F, Tedelind S, Carlsson T, Lundh C, Forssell-Aronsson E, Nilsson M. Down-regulation of the sodium/iodide symporter explains131I-induced thyroid stunning. Cancer Res. 2007;6:7512–7.

    Google Scholar 

  74. Medvedec M. Thyroid stunning in vivo and in vitro. Nucl Med Commun. 2005;26:731–5.

    PubMed  Google Scholar 

  75. Caudill CM, Zhu Z, Ciampi R, Stringer JR, Nikiforov YE. Dose-dependent generation of RET/PTC in human thyroid cells after in vitro exposure to gamma-radiation: a model of carcinogenic chromosomal rearrangement induced by ionizing radiation. J Clin Endocrinol Metab. 2005;90:2364–9.

    CAS  PubMed  Google Scholar 

  76. de Geus-Oei LF, Oei HY, Hennemann G, Krenning EP. Sensitivity of 123I whole-body scan and thyroglobulin in the detection of metastases or recurrent differentiated thyroid cancer. Eur J Nucl Med Mol Imaging. 2002;29:768–74.

    PubMed  Google Scholar 

  77. Sherman SI, Tielens ET, Sostre S, Wharam MD Jr, Ladenson PW. Clinical utility of posttreatment radioiodine scans in the management of patients with thyroid carcinoma. J Clin Endocrinol Metab. 1994;78:629–34.

    CAS  PubMed  Google Scholar 

  78. Fatourechi V, Hay ID, Mullan BP, Wiseman GA, Eghbali-Fatourechi GZ, Thorson LM, Gorman CA. Are posttherapy radioiodine scans informative and do they influence subsequent therapy of patients with differentiated thyroid cancer? Thyroid. 2000;10:573–7.

    CAS  PubMed  Google Scholar 

  79. Chen L, Luo Q, Shen Y, Yu Y, Yuan Z, Lu H, Zhu R. Incremental value of 131I SPECT/CT in the management of patients with differentiated thyroid carcinoma. J Nucl Med. 2008;49:1952–7.

    PubMed  Google Scholar 

  80. Wong KK, Zarzhevsky N, Cahill JM, Frey KA, Avram AM. Incremental value of diagnostic 131I SPECT/CT fusion imaging in the evaluation of differentiated thyroid carcinoma. AJR Am J Roentgenol. 2008;191:1785–94.

    PubMed  Google Scholar 

  81. Aide N, Heutte N, Rame JP, Rousseau E, Loiseau C, Henry-Amar M, Bardet S. Clinical relevance of single-photon emission computed tomography/computed tomography of the neck and thorax in postablation 131I scintigraphy for thyroid cancer. J Clin Endocrinol Metab. 2009;94:2075–84.

    CAS  PubMed  Google Scholar 

  82. Schmidt D, Szikszai A, Linke R, Bautz W, Kuwert T. Impact of 131I SPECT/spiral CT on nodal staging of differentiated thyroid carcinoma at the first radioablation. J Nucl Med. 2009;50:18–23.

    PubMed  Google Scholar 

  83. Spanu A, Solinas ME, Chessa F, Sanna D, Nuvoli S, Madeddu G. 131I SPECT/CT in the follow-up of differentiated thyroid carcinoma: incremental value versus planar imaging. J Nucl Med. 2009;50:184–90.

    PubMed  Google Scholar 

  84. Kohlfuerst S, Igerc I, Lobnig M, et al. Posttherapeutic 131ISPECT-CT offers high diagnostic accuracy when the findings on conventional planar imaging are inconclusive and allows a tailored patient treatment regimen. Eur J Nucl Med Mol Imaging. 2009;36:886–93.

    CAS  PubMed  Google Scholar 

  85. Akram K, Parker JA, Donohoe K, Kolodny G. Role of single photon emission computed tomography/computed tomography in localization of ectopic parathyroid adenoma: a pictorial case series and review of the current literature. Clin Nucl Med. 2009;34:500–2.

    PubMed  Google Scholar 

  86. Barwick T, Murray I, Megadmi H, et al. Single photon emission computed tomography (SPECT)/computed tomography using Iodine-123 in patients with differentiated thyroid cancer: additional value over whole body planar imaging and SPECT. Eur J Endocrinol. 2010;162:1131–9.

    CAS  PubMed  Google Scholar 

  87. Mustafa M, Kuwert T, Weber K, et al. Regional lymph node involvement in T1 papillary thyroid carcinoma: a bicentric prospective SPECT/CT study. Eur J Nucl Med Mol Imaging. 2010;37:1462–6.

    CAS  PubMed  Google Scholar 

  88. Grewal RK, Tuttle RM, Fox J, et al. The effect of posttherapy 131I SPECT/CT on risk classification and management of patients with differentiated thyroid cancer. J Nucl Med. 2010;51:1361–7.

    CAS  PubMed  Google Scholar 

  89. Wong KK, Sisson JC, Koral KF, Frey KA, Avram AM. Staging of differentiated thyroid carcinoma using diagnostic 131I SPECT/CT. AJR Am J Roentgenol. 2010;195:730–6.

    PubMed  Google Scholar 

  90. Avram AM. Radioiodine scintigraphy with SPECT/CT: an important diagnostic tool for thyroid cancer staging and risk stratification. J Nucl Med Technol. 2014;42:170–80.

    PubMed  Google Scholar 

  91. Al Balooshi B, Vinjamuri S. Should all patients with differentiated thyroid carcinoma undergo 131I SPECT-CT scanning rather than 131I whole-body scanning? Nucl Med Commun. 2015;36:540–52.

    Google Scholar 

  92. Allweiss P, Braunstein GD, Katz A, Waxman A. Sialadenitis following I-131 therapy for thyroid carcinoma: concise communication. J Nucl Med. 1984;25:755–8.

    CAS  PubMed  Google Scholar 

  93. Alexander C, Bader JB, Schaefer A, Finke C, Kirsch CM. Intermediate and long-term side effects of high-dose radioiodinetherapy for thyroid carcinoma. J Nucl Med. 1998;39:1551–4.

    CAS  PubMed  Google Scholar 

  94. de Vathaire F, Schlumberger M, Delisle MJ, Francese C, Challeton C, de la Genardière E, et al. Leukaemias and cancers following iodine-131 administration for thyroid cancer. Br J Cancer. 1997;75:734–9.

    PubMed  PubMed Central  Google Scholar 

  95. Verkooijen RB, Smit JW, Romijn JA, Stokkel M. The incidence of second primary tumors in thyroid cancer patients is increased, but not related to treatment of thyroid cancer. Eur J Endocrinol. 2006;155:801–6.

    CAS  PubMed  Google Scholar 

  96. Subramanian S, Goldstein DP, et al. Second primary malignancy risk in thyroid cancer survivors: a systematic review and metaanalysis. Thyroid. 2007;17:1277–88.

    PubMed  Google Scholar 

  97. Garsi J-P, Schlumberger M, Rubino C, et al. Therapeutic administration of 131I for differentiated thyroid cancer: radiation dose to ovaries and outcome of pregnancies. J Nucl Med. 2008;49:845–52.

    PubMed  Google Scholar 

  98. Wichers M, Benz E, Palmedo H, Biersack HJ, Grünwald F, Klingmüller D. Testicular function after radioiodine therapy for thyroid carcinoma. Eur J Nucl Med. 2000;27:503–7.

    CAS  PubMed  Google Scholar 

  99. Rosário PW, Barroso AL, Rezende LL, Padro EL, Borges MA, Guimares VC, Purisch S. Testicular function after radioiodine therapy in patients with thyroid cancer. Thyroid. 2006;16:667–70.

    PubMed  Google Scholar 

  100. Hebestreit H, Biko J, Drozd V, Demidchik Y, Burkhardt A, Trusen A, et al. Pulmonary fibrosis in youth treated with radioiodine for juvenile thyroid cancer and lung metastases after Chernobyl. Eur J Nucl Med Mol Imaging. 2011;38:1683–90.

    CAS  PubMed  Google Scholar 

  101. Reiners C, Biko J, Haenscheid H, Hebestreit H, Kirinjuk S, Baranowski O, et al. Twenty-five years after Chernobyl: outcome of radioiodine treatment in children and adolescents with very high-risk radiation-induced differentiated thyroid carcinoma. J Clin Endocrinol Metab. 2013;98:3039–48.

    CAS  PubMed  Google Scholar 

  102. Pilli T, Brianzoni E, Capoccetti F, et al. A comparison of 1850 (50 mCi) and 3700 MBq (100 mCi) 131-iodine administered doses for recombinant thyrotropin-stimulated postoperative thyroid remnant ablation in differentiated thyroid cancer. J Clin Endocrinol Metab. 2007;92:3542–6.

    CAS  PubMed  Google Scholar 

  103. Santini F, Pinchera A, Marsili A, et al. Lean body mass is a major determinant of levothyroxine dosage in the treatment of thyroid diseases. J Clin Endocrinol Metab. 2005;90:124–7.

    CAS  PubMed  Google Scholar 

  104. Sawin CT, Geller A, Hershman JM, Castelli W, Bacharach P. The aging thyroid. The use of thyroid hormone in older persons. JAMA. 1989;261:2653–5.

    CAS  PubMed  Google Scholar 

  105. Bartalena L, Martino E, Pacchiarotti A, et al. Factors affecting suppression of endogenous thyrotropin secretion by thyroxine treatment: retrospective analysis in athyreotic and goitrous patients. J Clin Endocrinol Metab. 1987;64:849–55.

    CAS  PubMed  Google Scholar 

  106. Marcocci C, Golia F, Bruno-Bossio G, Vignali E, Pinchera A. Carefully monitored levothyroxine suppressive therapy is not associated with bone loss in premenopausal women. J Clin Endocrinol Metab. 1994;78:818–23.

    CAS  PubMed  Google Scholar 

  107. Cooper DS, Specker B, Ho M, et al. Thyrotropin suppression and disease progression in patients with differentiated thyroid cancer: results from the National Thyroid Cancer Treatment Cooperative Registry. Thyroid. 1998;8:737–44.

    CAS  PubMed  Google Scholar 

  108. Mazzaferri EL, Jhiang SM. Differentiated thyroid cancer long-term impact of initial therapy. Trans Am Clin Climatol Assoc. 1995;106:151–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Schlumberger M. Can iodine-131 whole-body scan be replaced by thyroglobulin measurement in the post-surgical follow-up of differentiated thyroid carcinoma? J Nucl Med. 1992;33:172–3.

    CAS  PubMed  Google Scholar 

  110. Mazzaferri EL. Changing paradigms in the follow-up of patients with differentiated thyroid cancer: an alternative to [18F]fluorodeoxyglucose positron emission tomographic scanning. Endocr Pract. 2003;9:324–6.

    PubMed  Google Scholar 

  111. Van Herle AJ. Serum thyroglobulin levels in patients with differentiated thyroid carcinoma. Ann Radiol (Paris). 1977;20:743–5.

    Google Scholar 

  112. Spencer CA, Lopresti JS. Measuring thyroglobulin and thyroglobulin autoantibody in patients with differentiated thyroid cancer. Nat Clin Pract Endocrinol Metab. 2008;4:223–33.

    CAS  PubMed  Google Scholar 

  113. Pacini F, Mariotti S, Formica N, Elisei R, Anelli S, Capotorti E, Pinchera A. Thyroid autoantibodies in thyroid cancer: incidence and relationship with tumour outcome. Acta Endocrinol. 1988;119:373–80.

    CAS  Google Scholar 

  114. Pacini F, Molinaro E, Lippi F, et al. Prediction of disease status by recombinant human TSH-stimulated serum Tg in the postsurgical follow-up of differentiated thyroid carcinoma. J Clin Endocrinol Metab. 2001;86:5686–90.

    CAS  PubMed  Google Scholar 

  115. Mazzaferri EL, Robbins RJ, Spencer CA, et al. A consensus report of the role of serum thyroglobulin as a monitoring method for low-risk patients with papillary thyroid carcinoma. J Clin Endocrinol Metab. 2003;88:1433–41.

    CAS  PubMed  Google Scholar 

  116. Schlumberger M, Hitzel A, Toubert ME, et al. Comparison of seven serum thyroglobulin assays in the follow-up of papillary and follicular thyroid cancer patients. J Clin Endocrinol Metab. 2007;92:2487–95.

    CAS  PubMed  Google Scholar 

  117. Chindris AM, Diehl NN, Crook JE, Fatourechi V, Smallridge RC. Undetectable sensitive serum thyroglobulin (<0.1 ng/ml) in 163 patients with follicular cell-derived thyroid cancer: results of rhTSH stimulation and neck ultrasonography and long-term biochemical and clinical follow-up. J Clin Endocrinol Metab. 2012;97:2714–23.

    CAS  PubMed  Google Scholar 

  118. Pacini F, Capezzone M, Elisei R, Ceccarelli C, Taddei D, Pinchera A. Diagnostic 131-iodine whole-body scan may be avoided in thyroid cancer patients who have undetectable stimulated serum Tg levels after initial treatment. J Clin Endocrinol Metab. 2002;87:1499–501.

    CAS  PubMed  Google Scholar 

  119. Gerard SK, Cavalieri RR. I-123 diagnostic thyroid tumor whole-body scanning with imaging at 6, 24, and 48 hours. Clin Nucl Med. 2002;27:1–8.

    PubMed  Google Scholar 

  120. Yan W, Roach PJ, Bautovich GJ, Learoyd DL, Robinson BG. Timing of iodine-123 scintigraphy following use of recombinant human thyrotropin in differentiated thyroid carcinoma. Clin Nucl Med. 2007;32:375–7.

    PubMed  Google Scholar 

  121. Pacini F, Lippi F, Formica N, Elisei R, Anelli S, Ceccarelli C, Pinchera A. Therapeutic doses of iodine-131 reveal undiagnosed metastases in thyroid cancer patients with detectable serum thyroglobulin levels. J Nucl Med. 1987;28:1888–91.

    CAS  PubMed  Google Scholar 

  122. Pineda JD, Lee T, Ain K, Reynolds JC, Robbins J. Iodine-131 therapy for thyroid cancer patients with elevated thyroglobulin and negative diagnostic scan. J Clin Endocrinol Metab. 1995;80:1488–92.

    CAS  PubMed  Google Scholar 

  123. Elisei R, Pinchera A, Romei C, et al. Expression of thyrotropin receptor (TSH-R), thyroglobulin, thyroperoxidase, and calcitonin messenger ribonucleic acids in thyroid carcinomas: evidence of TSH-R gene transcript in medullary histotype. J Clin Endocrinol Metab. 1994;78:867–71.

    CAS  PubMed  Google Scholar 

  124. Arturi F, Russo D, Schlumberger M, du Villard JA, Caillou B, Vigneri P, Wicker R, et al. Iodide symporter gene expression in human thyroid tumors. J Clin Endocrinol Metab. 1998;83:2493–6.

    CAS  PubMed  Google Scholar 

  125. Pacini F. Follow-up of differentiated thyroid cancer. Eur J Nucl Med Mol Imaging. 2002;29(Suppl 2):492–4966.

    Google Scholar 

  126. Chiovato L, Latrofa F, Braverman LE, et al. Disappearance of humoral thyroid autoimmunity after complete removal of thyroid antigens. Ann Intern Med. 2003;139:346–51.

    CAS  PubMed  Google Scholar 

  127. Schlumberger M, Challeton C, De Vathaire F, et al. Radioactive iodine treatment and external radiotherapy for lung and bone metastases from thyroid carcinoma. J Nucl Med. 1996;37:598–605.

    CAS  PubMed  Google Scholar 

  128. Urken ML, Milas M, Randolph GW, et al. Management of recurrent and persistent metastatic lymph nodes in well-differentiated thyroid cancer: a multifactorial decision-making guide for the Thyroid Cancer Care Collaborative. Head Neck. 2015;37:605–14.

    PubMed  Google Scholar 

  129. Ceccarelli C, Pacini F, Lippi F, Elisei R, Arganini M, Miccoli P, Pinchera A. Thyroid cancer in children and adolescents. Surgery. 1988;104:1143–8.

    CAS  PubMed  Google Scholar 

  130. Vassilopoulou-Sellin R, Klein MJ, Smith TH, et al. Pulmonary metastases in children and young adults with differentiated thyroid cancer. Cancer. 1993;71:1348–52.

    CAS  PubMed  Google Scholar 

  131. Piekarski JD, Schlumberger M, Leclere J, Couanet D, Masselot J, Parmentier C. Chest computed tomography (CT) in patients with micronodular lung metastases of differentiated thyroid carcinoma. Int J Radiat Oncol Biol Phys. 1985;11:1023–7.

    CAS  PubMed  Google Scholar 

  132. Schlumberger M, Arcangioli O, Piekarski JD, Tubiana M, Parmentier C. Detection and treatment of lung metastases of differentiated thyroid carcinoma in patients with normal chest X-rays. J Nucl Med. 1988;29:1790–4.

    CAS  PubMed  Google Scholar 

  133. Sumimura J, Nakagawa K, Kawamura J, Tayama M, Takahashi E, Moritomo T, Miyata M. Thyroid cancer metastasis to the lumbar spine successfully treated by embolization and radioiodine. A case report. Nippon Geka Gakkai Zasshi. 1990;91:910–3.

    CAS  PubMed  Google Scholar 

  134. Court C, Noun Z, Gagey O, Nordin JY. Surgical treatment of metastases from thyroid cancer in the axial skeleton. A retrospective study of 18 cases. Acta Orthop Belg. 2000;66:345–52.

    CAS  PubMed  Google Scholar 

  135. Smit JW, Links TP, Hew JM, Goslings BM, Vielvoye GJ, Vermey A. Embolization of skeletal metastases in patients with differentiated thyroid carcinoma. Ned Tijdschr Geneeskd. 2000;144:1406–10.

    CAS  PubMed  Google Scholar 

  136. Van Tol KM, Hew JM, Jager PL, Vermey A, Dullaart RP, Links TP. Embolization in combination with radioiodine therapy for bone metastases from differentiated thyroid carcinoma. Clin Endocrinol (Oxf). 2000;52:653–9.

    Google Scholar 

  137. van Tol KM, Hew JM, Links TP. Images in thyroidology. Embolization of a bone metastasis of follicular thyroid carcinoma. Thyroid. 2000;10:621–2.

    PubMed  Google Scholar 

  138. Klain M, Ricard M, Leboulleux S, Baudin E, Schlumberger M. Radioiodine therapy for papillary and follicular thyroid carcinoma. Eur J Nucl Med Mol Imaging. 2002;29:479–85.

    Google Scholar 

  139. Franzius C, Dietlein M, Biermann M, et al. Procedure guideline for radioiodine therapy and 131iodine whole-body scintigraphy in paediatric patients with differentiated thyroid cancer. Nuklearmedizin. 2007;46:224–2231.

    CAS  PubMed  Google Scholar 

  140. Jarzab B, Handkiewicz-Junak D, Wloch J. Juvenile differentiated thyroid carcinoma and the role of radioiodine in its treatment: a qualitative review. Endocr Relat Cancer. 2005;12:773–803.

    CAS  PubMed  Google Scholar 

  141. Van Nostrand D, Wartofsky L. Radioiodine in the treatment of thyroid cancer. Endocrinol Metab Clin N Am. 2007;36:807–22.

    Google Scholar 

  142. Benua RS, Leeper RD. A method and rationale for treating metastatic thyroid carcinoma with the largest safe dose of I-131. In: Medeiros-Neto G, Gaitan G, editors. Frontiers in thyroidology. New York: Plenum; 1986. p. 1317–21.

    Google Scholar 

  143. Traino AC, Ferrari M, Cremonesi M, Stabin MG. Influence of total-body mass on the scaling of S-factors for patient-specific, blood-based red-marrow dosimetry. Phys Med Biol. 2007;52:5231–48.

    CAS  PubMed  Google Scholar 

  144. Durante C, Haddy N, Baudin E, et al. Long-term outcome of 444 patients with distant metastases from papillary and follicular thyroid carcinoma: benefits and limits of radioiodine therapy. J Clin Endocrinol Metab. 2006;91:2892.

    CAS  PubMed  Google Scholar 

  145. Lippi F, Capezzone M, Angelini F, Taddei D, Molinaro E, Pinchera A, Pacini F. Radioiodine treatment of metastatic differentiated thyroid cancer in patients on l-thyroxine, using recombinant human TSH. Eur J Endocrinol. 2001;144:5–11.

    CAS  PubMed  Google Scholar 

  146. Jarzab B, Handkiewicz-Junak D, Roskosz J, et al. Recombinant human TSH-aided radioiodine treatment of advanced differentiated thyroid carcinoma: a single-centre study of 54 patients. Eur J Nucl Med Mol Imaging. 2003;30:1077–86.

    CAS  PubMed  Google Scholar 

  147. Luster M, Lippi F, Jarzab B, Perros P, Lassmann M, Reiners C, Pacini F. rhTSH-aided radioiodine ablation and treatment of differentiated thyroid carcinoma: a comprehensive review. Endocr Relat Cancer. 2005;12:49–64.

    CAS  PubMed  Google Scholar 

  148. Eschmann SM, Reischl G, Bilger K, et al. Evaluation of dosimetry of radioiodine therapy in benign and malignant thyroid disorders by means of iodine-124 and PET. Eur J Nucl Med. 2002;29:760–7.

    CAS  Google Scholar 

  149. Freudenberg LS, Jentzen W, Görges R, Petrich T, Marlowe RJ, Knust J, Bockisch A. 124I-PET dosimetry in advanced differentiated thyroid cancer: therapeutic impact. Nuklearmedizin. 2007;46:121–8.

    CAS  PubMed  Google Scholar 

  150. Erdi YE, Macapinlac H, Larson SM, Erdi AK, Yeung H, Furhang EE, Humm JL. Radiation dose assessment for I-131 therapy of thyroid cancer using I-124 PET imaging. Clin Positron Imaging. 1999;2:41–6.

    PubMed  Google Scholar 

  151. Jentzen W, Weise R, Kupferschläger J, et al. Iodine-124 PET dosimetry in differentiated thyroid cancer: recovery coefficient in 2D and 3D modes for PET/CT systems. Eur J Nucl Med Mol Imaging. 2008;35:611–23.

    PubMed  Google Scholar 

  152. Jentzen W, Freudenberg L, Eising EG, Sonnenschein W, Knust J, Bockisch A. Optimized 124I PET dosimetry protocol for radioiodine therapy of differentiated thyroid cancer. J Nucl Med. 2008;49:1017–723.

    PubMed  Google Scholar 

  153. Kolbert KS, Pentlow KS, Pearson JR, Sheikh A, Finn RD, Humm JL, Larson SM. Prediction of absorbed dose to normal organs in thyroid cancer patients treated with 131I by use of 124IPET and 3-dimensional internal dosimetry software. J Nucl Med. 2007;48:143–9.

    CAS  PubMed  Google Scholar 

  154. Lassmann M, Hänscheid H, Verburg FA, Luster M. The use of dosimetry in the treatment of differentiated thyroid cancer. Q J Nucl Med Mol Imaging. 2011;55:107–15.

    CAS  PubMed  Google Scholar 

  155. Jentzen W, Verschure F, van Zon A, van de Kolk R, Wierts R, Schmitz J, et al. Response assessment of bone metastases from differentiated thyroid cancer patients in the initial radioiodine treatment using iodine-124 PET imaging. J Nucl Med. 2016;57:1499–504.

    CAS  PubMed  Google Scholar 

  156. Schlumberger M, Brose M, Elisei R, et al. Definition and management of radioactive iodine-refractory differentiated thyroid cancer. Lancet Diabetes Endocrinol. 2014;2:356–8.

    PubMed  Google Scholar 

  157. Samaan NA, Schultz PN, Hickey RC, Goepfert H, Haynie TP, Johnston DA, Ordonez NG. The results of various modalities of treatment of well differentiated thyroid carcinomas: a retrospective review of 1599 patients. J Clin Endocrinol Metab. 1992;75:714–20.

    CAS  PubMed  Google Scholar 

  158. Matuszczyk A, Petersenn S, Bockisch A, Gorges R, Sheu SY, Veit P, Mann K. Chemotherapy with doxorubicin in progressive medullary and thyroid carcinoma of the follicular epithelium. Horm Metab Res. 2008;40:210–3.

    CAS  PubMed  Google Scholar 

  159. Sherman SI. Cytotoxic chemotherapy for differentiated thyroid carcinoma. Clin Oncol (R Coll Radiol). 2010;22:464–8.

    CAS  Google Scholar 

  160. Shimaoka K, Schoenfeld DA, DeWys WD, Creech RH, DeConti R. A randomized trial of doxorubicin versus doxorubicin plus cisplatin in patients with advanced thyroid carcinoma. Cancer. 1985;56:2155–60.

    CAS  PubMed  Google Scholar 

  161. Williams SD, Birch R, Einhorn LH. Phase II evaluation of doxorubicin plus cisplatin in advanced thyroid cancer: a Southeastern Cancer Study Group Trial. Cancer Treat Rep. 1986;70:405–7.

    CAS  PubMed  Google Scholar 

  162. Santini F, Bottici V, Elisei R, et al. Cytotoxic effects of carboplatinum and epirubicin in the setting of an elevated serum thyrotropin for advanced poorly differentiated thyroid cancer. J Clin Endocrinol Metab. 2002;87:4160.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariano Grosso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guidoccio, F., Aghakhanyan, G., Grosso, M. (2019). Hybrid Imaging and Radionuclide Therapy for Thyroid Disorders. In: Volterrani, D., Erba, P.A., Carrió, I., Strauss, H.W., Mariani, G. (eds) Nuclear Medicine Textbook. Springer, Cham. https://doi.org/10.1007/978-3-319-95564-3_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95564-3_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95563-6

  • Online ISBN: 978-3-319-95564-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics