Skip to main content

Biopolymer Synthesis and Biodegradation

  • Chapter
  • First Online:

Abstract

The present chapter is focussed on development of sustainable biobased biodegradable polymers for various end use applications. Biobased polymers are promising green materials since they are completely made from renewable agricultural resources, they also provide significant energy savings in their production compare to petroleum based plastics. However, it is necessary to address the environmental biodegradability of biobased materials in order to meet various commercial and environmental needs for their sustainable growth. In this chapter we discussed biobased polymers with a controlled onset of biodegradation induced by triggered system from natural fillers such as cellulose, hemicellulose and lignin, and evaluating their biodegradability in natural environments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 54:450–472

    PubMed  PubMed Central  CAS  Google Scholar 

  • ASTM D (1992) 5338-92—Standard test method for determining aerobic biodegradation of plastic materials under controlled composting conditions. Current edition approved, 456–461

    Google Scholar 

  • Avella M, Bonadies E, Martuscelli E, Rimedio R (2001) European current standardization for plastic packaging recoverable through composting and biodegradation. Polym Testing 20:517–521

    Article  Google Scholar 

  • Babu R, O’Connor K, Seeram R (2013) Current progress on bio-based polymers and their future trends. Prog Biomater 2

    Google Scholar 

  • Bailey I (2017) New environmental policy instruments in the European Union: politics, economics, and the implementation of the packaging waste directive. Taylor & Francis

    Google Scholar 

  • Barnes DK, Galgani F, Thompson RC, Barlaz M (2009) Accumulation and fragmentation of plastic debris in global environments. Philos Trans R Soc Lond B Biol Sci 364:1985–1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barone JR, Arikan O (2007) Composting and biodegradation of thermally processed feather keratin polymer. Polym Degrad Stab 92:859–867

    Article  CAS  Google Scholar 

  • Bastioli C (1998) Properties and applications of Mater-Bi starch-based materials. Polym Degrad Stab 59:263–272

    Article  CAS  Google Scholar 

  • Bhatt R, Shah D, Patel KC, Trivedi U (2008) PHA–rubber blends: synthesis, characterization and biodegradation. Biores Technol 99:4615–4620

    Article  CAS  Google Scholar 

  • Chiellini E, Corti A, D’Antone S (2007) Oxo-biodegradable full carbon backbone polymers —biodegradation behaviour of thermally oxidized polyethylene in an aqueous medium. Polym Degrad Stab 92:1378–1383

    Article  CAS  Google Scholar 

  • Chiellini E, Corti A, Solaro R (1999) Biodegradation of poly(vinyl alcohol) based blown films under different environmental conditions. Polym Degrad Stab 64:305–312

    Article  CAS  Google Scholar 

  • Chiellini E, Corti A, Swift G (2003) Biodegradation of thermally-oxidized, fragmented low-density polyethylenes. Polym Degrad Stab 81:341–351

    Article  CAS  Google Scholar 

  • Chiellini E, Corti A, Del Sarto G, D’Antone S (2006) Oxo-biodegradable polymers—effect of hydrolysis degree on biodegradation behaviour of poly(vinyl alcohol). Polym Degrad Stab 91:3397–3406

    Article  CAS  Google Scholar 

  • Corti A, Muniyasamy S, Vitali M, Imam SH, Chiellini E (2010) Oxidation and biodegradation of polyethylene films containing pro-oxidant additives: synergistic effects of sunlight exposure, thermal aging and fungal biodegradation. Polym Degrad Stab 95:1106–1114

    Article  CAS  Google Scholar 

  • Corti A, Sudhakar M, Chiellini E (2012) Assessment of the whole environmental degradation of oxo-biodegradable linear low density polyethylene (LLDPE) films designed for mulching applications. J Polym Environ, 1–12

    Google Scholar 

  • Datta J, Kopczyńska P (2016) From polymer waste to potential main industrial products: actual state of recycling and recovering. Crit Rev Environ Sci Technol 46:905–946

    Article  CAS  Google Scholar 

  • Davis G, Song J (2006) Biodegradable packaging based on raw materials from crops and their impact on waste management. Ind Crops Prod 23:147–161

    Article  CAS  Google Scholar 

  • Fukushima K, Abbate C, Tabuani D, Gennari M, Camino G (2009) Biodegradation of poly(lactic acid) and its nanocomposites. Polym Degrad Stab 94:1646–1655

    Article  CAS  Google Scholar 

  • Fukushima K, Tabuani D, Abbate C, Arena M, Ferreri L (2010) Effect of sepiolite on the biodegradation of poly(lactic acid) and polycaprolactone. Polym Degrad Stab 95:2049–2056

    Article  CAS  Google Scholar 

  • Gupta B, Revagade N, Hilborn J (2007) Poly (lactic acid) fiber: an overview. Prog Polym Sci 32:455–482

    Article  CAS  Google Scholar 

  • Hicks C, Dietmar R, Eugster M (2005) The recycling and disposal of electrical and electronic waste in China—legislative and market responses. Environ Impact Assess Rev 25:459–471

    Article  Google Scholar 

  • Ikada Y, Tsuji H (2000) Biodegradable polyesters for medical and ecological applications. Macromol Rapid Commun 21:117–132

    Article  CAS  Google Scholar 

  • Itävaara M, Karjomaa S, Selin J-F (2002) Biodegradation of polylactide in aerobic and anaerobic thermophilic conditions. Chemosphere 46:879–885

    Article  PubMed  Google Scholar 

  • Jambeck JR, Geyer R, Wilcox C, Siegler TR, Perryman M, Andrady A et al (2015) Plastic waste inputs from land into the ocean. Science 347:768–771

    Article  CAS  PubMed  Google Scholar 

  • Kale G, Auras R, Singh SP (2006) Degradation of commercial biodegradable packages under real composting and ambient exposure conditions. J Polym Environ 14:317–334

    Article  CAS  Google Scholar 

  • Kang H-Y, Schoenung JM (2005) Electronic waste recycling: a review of US infrastructure and technology options. Resour Conserv Recycl 45:368–400

    Article  Google Scholar 

  • Krzan A, Hemjinda S, Miertus S, Corti A, Chiellini E (2006) Standardization and certification in the area of environmentally degradable plastics. Polym Degrad Stab 91:2819–2833

    Article  CAS  Google Scholar 

  • Kumar MNR (2000) A review of chitin and chitosan applications. React Funct Polym 46:1–27

    Article  CAS  Google Scholar 

  • Kunioka M, Ninomiya F, Funabashi M (2006) Biodegradation of poly(lactic acid) powders proposed as the reference test materials for the international standard of biodegradation evaluation methods. Polym Degrad Stab 91:1919–1928

    Article  CAS  Google Scholar 

  • Labet M, Thielemans W (2009) Synthesis of polycaprolactone: a review. Chem Soc Rev 38:3484–3504

    Article  CAS  PubMed  Google Scholar 

  • Lasprilla AJ, Martinez GA, Lunelli BH, Jardini AL, Maciel Filho R (2012) Poly-lactic acid synthesis for application in biomedical devices—a review. Biotechnol Adv 30:321–328

    Article  CAS  PubMed  Google Scholar 

  • Lee SY (1996) Bacterial polyhydroxyalkanoates. Biotechnol Bioeng 49:1–14

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Xie F, Yu L, Chen L, Li L (2009) Thermal processing of starch-based polymers. Prog Polym Sci 34:1348–1368

    Article  CAS  Google Scholar 

  • Lucas N, Bienaime C, Belloy C, Queneudec M, Silvestre F, Nava-Saucedo J-E (2008) Polymer biodegradation: mechanisms and estimation techniques—a review. Chemosphere 73:429–442

    Article  CAS  PubMed  Google Scholar 

  • Mezzanotte V, Bertani R, Innocenti FD, Tosin M (2005) Influence of inocula on the results of biodegradation tests. Polym Degrad Stab 87:51–56

    Article  CAS  Google Scholar 

  • Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994

    Article  CAS  PubMed  Google Scholar 

  • Muniyasamy S, Anstey A, Reddy MM, Misra M, Mohanty A (2013a) Biodegradability and compostability of lignocellulosic based composite materials. J Renew Mater 1:253–272

    Article  CAS  Google Scholar 

  • Muniyasamy S, Reddy MM, Misra M, Mohanty A (2013b) Biodegradable green composites from bioethanol co-product and poly (butylene adipate-co-terephthalate). Ind Crops Prod 43:812–819

    Article  CAS  Google Scholar 

  • Narayan R (2006) Biobased and biodegradable polymer materials: rationale, drivers, and technology exemplars. ACS Publications

    Google Scholar 

  • Pagga U (1995) Determination of the aerobic biodegradability of polymeric material in a laboratory controlled composting test. Chemosphere, 4475–4487

    Google Scholar 

  • Pandey JK, Saini DR, Ahn SH (2011) Degradation of cellulose-based polymer composites. In: Kalia S, Kaith BS, Kaur I (eds) Cellulose fibers: bio- and nano-polymer composites. Springer, Berlin, Heidelberg, pp 507–517

    Google Scholar 

  • PlasticsEurope (2014) Plastics—the facts 2014/2015. An analysis of european latest plastics production, demand and waste data. PlasticsEurope, Brussels, Belgium

    Google Scholar 

  • Prendergast G, Pitt L (1996) Packaging, marketing, logistics and the environment: are there trade-offs? Int J Phys Distrib Logistics Manage 26:60–72

    Article  Google Scholar 

  • Råberg U, Hafrén J (2008) Biodegradation and appearance of plastic treated solid wood. Int Biodeterior Biodegradation 62:210–213

    Article  CAS  Google Scholar 

  • Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632

    Article  CAS  Google Scholar 

  • Rochman CM, Browne MA, Halpern BS, Hentschel BT, Hoh E, Karapanagioti HK et al (2013) Policy: classify plastic waste as hazardous. Nature 494:169–171

    Article  CAS  PubMed  Google Scholar 

  • Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494

    Article  CAS  Google Scholar 

  • Standard A (2009) D6400-04 Standard specification for compostable plastics. American Standards for Testing and Materials. ASTM, Web. Nov 2009

    Google Scholar 

  • Subramanian P (2000) Plastics recycling and waste management in the US. Resour Conserv Recycl 28:253–263

    Article  Google Scholar 

  • Sudesh K, Abe H, Doi Y (2000) Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog Poly Sci 25:1503–1555

    Google Scholar 

  • Tuomela M, Hatakka A, Raiskila S, Vikman M, Itävaara M (2001) Biodegradation of radiolabelled synthetic lignin (C-DHP) and mechanical pulp in a compost environment. Appl Microbiol Biotechnol 55:492–499

    Article  CAS  PubMed  Google Scholar 

  • Villanueva A, Eder P (2014) End-of-waste criteria for waste plastic for conversion. JRC Technical Reports, European Union, Luxembourg. http://dx. doi. org/https://doi.org/10.2791/13033

  • Wiles DM, Scott G (2006) Polyolefins with controlled environmental degradability. Polym Degrad Stab 91:1581–1592

    Article  CAS  Google Scholar 

  • Witt U, Einig T, Yamamoto M, Kleeberg I, Deckwer WD, Müller RJ (2001) Biodegradation of aliphatic–aromatic copolyesters: evaluation of the final biodegradability and ecotoxicological impact of degradation intermediates. Chemosphere 44:289–299

    Article  CAS  PubMed  Google Scholar 

  • Xie F, Liu P, Yu L (2014) Processing of plasticized starch-based materials: state of the art and perspectives. In: Starch polymers: from genetic engineering to green applications, vol 1

    Google Scholar 

  • Yagi H, Ninomiya F, Funabashi M, Kunioka M (2009) Anaerobic biodegradation tests of poly(lactic acid) and polycaprolactone using new evaluation system for methane fermentation in anaerobic sludge. Polym Degrad Stab 94:1397–1404

    Article  CAS  Google Scholar 

  • Zhang DQ, Tan SK, Gersberg RM (2010) Municipal solid waste management in China: status, problems and challenges. J Environ Manage 91:1623–1633

    Article  CAS  PubMed  Google Scholar 

  • Zhao J-H, Wang X-Q, Zeng J, Yang G, Shi F-H, Yan Q (2005) Biodegradation of poly(butylene succinate-co-butylene adipate) by Aspergillus versicolor. Polym Degrad Stab 90:173–179

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Özgür Seydibeyoğlu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Muniyasamy, S., Seydibeyoğlu, Ö., Thulasinathan, B., Arun, A. (2018). Biopolymer Synthesis and Biodegradation. In: Singh, O., Chandel, A. (eds) Sustainable Biotechnology- Enzymatic Resources of Renewable Energy. Springer, Cham. https://doi.org/10.1007/978-3-319-95480-6_15

Download citation

Publish with us

Policies and ethics