Skip to main content

The Realm of Lipases in Biodiesel Production

  • Chapter
  • First Online:
Sustainable Biotechnology- Enzymatic Resources of Renewable Energy

Abstract

Lipases are the enzymes known for the hydrolytic activity on carboxylic fatty ester bonds. The industrial interest in lipases is due to their application in a wide array of products: in detergents and cleaning products, in pharmaceutical applications, in the food industry, and on the production of biodiesel. Biodiesel, i.e. short-chain-acyl fatty ester, is mainly produced via the transesterification of fatty-acyl glycerides or esterification of fatty acids, both reactions with a short chain alcohol. Lipases can catalyze both said reactions with high specificity, producing biodiesel at high yields at low temperature. With the significant advances in biodiesel production over the last decades, coupled with a strong industrial partnership, the costs of utilizing lipases as catalysts have dropped significantly. The production of lipases became popularized in the industry due to advances not only in the reaction mechanisms, and in better understanding of lipase-producing microorganisms, but to cost-effective utilization practices. Immobilization is the practice responsible for the initial breakthrough innovation that allowed efficient reutilization of lipases, thus reducing the cost per batch. There was, and still there is, numerous advances in the development of immobilizing matrices and novel utilization pathways of immobilized enzymes available in the literature. More recently, other methods of using lipase in biodiesel production have been developed, e.g. via the utilization of whole-cell and fermented solid with lypolytic activity, and by the use of lipase in liquid formulations. Over the last years, there has been an increased interest in developing next-generation biodiesel, i.e., the one produced from alternative lipid feedstock, such as microbial and residual lipids, and by utilizing ethanol as acyl agent, instead of methanol. There has also been prominent advances in the reactor engineering aspect of lipase-derived biodiesel, by promoting more efficient batch processes, and the development of lower-cost continuous processing. The present chapter reviews the recent literature in the important field of using lipases in biodiesel production, and critically describes the opportunities and challenges present in such applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adachi D, Hama S, Numata T, Nakashima K, Ogino C, Fukuda H, Kondo A (2011) Development of an Aspergillus oryzae whole-cell biocatalyst coexpressing triglyceride and partial glyceride lipases for biodiesel production. Bioresour Technol 102:6723–6729

    Article  PubMed  CAS  Google Scholar 

  • Adlercreutz P (2013) Immobilisation and application of lipases in organic media. Chem Soc Rev 42:6406–6436

    Article  PubMed  CAS  Google Scholar 

  • Aguieiras ECG, Cavalcanti-Oliveira ED, De Castro AM, Langone MAP, Freire DMG (2014) Biodiesel production from Acrocomia aculeata acid oil by (enzyme/enzyme) hydroesterification process: Use of vegetable lipase and fermented solid as low-cost biocatalysts. Fuel 135:315–321

    Article  CAS  Google Scholar 

  • Aguieiras ECG, Cavalcanti-Oliveira ED, De Castro AM, Langone MAP, Freire DMG (2017) Simultaneous enzymatic transesterification and esterification of an acid oil using fermented solid as biocatalyst. J Am Oil Chem Soc 94:551–558

    Article  CAS  Google Scholar 

  • Amoah J, Ho S-H, Hama S, Yoshida A, Nakanishi A, Hasunuma T, Ogino C, Kondo A (2016) Lipase cocktail for efficient conversion of oils containing phospholipids to biodiesel. Bioresour Technol 211:224–230

    Article  PubMed  CAS  Google Scholar 

  • Anastas P, Eghbali N (2010) Green chemistry: principles and practice. Chem Soc Rev 39:301–312

    Article  PubMed  CAS  Google Scholar 

  • Andrade GSS, Freitas L, Oliveira PC, De Castro HF (2012) Screening, immobilization and utilization of whole cell biocatalysts to mediate the ethanolysis of babassu oil. J Mol Catal B Enzym 84:183–188

    Article  CAS  Google Scholar 

  • Ansari SA, Husain Q (2012) Potential applications of enzymes immobilized on/in nano materials: a review. Biotechnol Adv 30:512–523

    Article  CAS  PubMed  Google Scholar 

  • Antczak MS, Kubiak A, Antczak T, Bielecki S (2009) Enzymatic biodiesel synthesis—key factors affecting efficiency of the process. Renew Energy 34:1185–1194

    Article  CAS  Google Scholar 

  • Arai S, Nakashima K, Tanino T, Ogino C, Kondo A, Fukuda H (2010) Production of biodiesel fuel from soybean oil catalyzed by fungus whole-cell biocatalysts in ionic liquids. Enzyme Microb Technol 46:51–55

    Article  CAS  Google Scholar 

  • Aransiola EF, Ojumu TV, Oyekola OO, Madzimbamuto TF, Ikhu-Omoregbe DIO (2014) A review of current technology for biodiesel production: sate of the art. Biomass Bioenergy 61:276–297

    Article  CAS  Google Scholar 

  • Azócar L, Navia R, Beroiz L, Jeison D, Ciudad G (2014) Enzymatic biodiesel production kinetics using co-solvent and an anhydrous medium: a strategy to improve lipase performance in a semi-continuous reactor. New Biotechnol 31:422–429

    Article  CAS  Google Scholar 

  • Ban K, Kaieda M, Matsumoto T, Kondo A, Fukuda H (2001) Whole cell biocatalyst for biodiesel fuel production utilizing Rhizopus oryzae cells immobilized within biomass support particles. Biochem Eng J 8:39–43

    Article  PubMed  CAS  Google Scholar 

  • Ban K, Hama S, Nishizuka K, Kaieda M, Matsumoto T, Kondo A, Noda H, Fukuda H (2002) Repeated use of whole-cell biocatalysts immobilized within biomass support particles for biodiesel fuel production. J Mol Catal B Enzym 17:157–165

    Article  CAS  Google Scholar 

  • Barros M, Fleuri LF, Macedo GA (2010) Seed lipases: sources, applications and properties—a review. Braz J Chem Eng 27:15–29

    Article  CAS  Google Scholar 

  • Batistella L, Lerin LA, Brugnerotto P, Danielli AJ, Trentin CM, Popiolski A, Treichel H, Oliveira JV, de Oliveira D (2012) Ultrasound-assisted lipase-catalyzed transesterification of soybean oil in organic solvent system. Ultrason Sonochem 19:452–458

    Article  PubMed  CAS  Google Scholar 

  • Bhangu SK, Gupta S, Ashokkumar M (2017) Ultrasonic enhancement of lipase-catalysed transesterification for biodiesel synthesis. Ultrason Sonochem 34:305–309

    Article  PubMed  CAS  Google Scholar 

  • Bi C, Min M, Nie Y, Xie Q, Lu, Q, Deng X, Anderson E, Li D, Chen P, Ruan R (2015) Process development for scum to biodiesel conversion. Bioresour Technol 185:185–193

    Google Scholar 

  • Bosley JA, Moore SR (1994) Immobilized Lipases. Patent Appl WO 94/28118

    Google Scholar 

  • Brask J, Damstrup ML, Nielsen PM, Holm HC, Maes J, Greyt WD (2011) Combining enzymatic esterification with conventional alkaline transesterification in an integrated biodiesel process. Appl Biochem Biotechnol 163:918–927

    Article  PubMed  CAS  Google Scholar 

  • Caetano NS, Caldeira D, Martins AA, Mata TM (2017) Valorisation of spent coffee grounds: production of biodiesel via enzymatic catalysis with ethanol and a co-solvent. Waste Biomass Valor 5:1–14

    Google Scholar 

  • Cambon E, Bourlieu C, Salum TFC, Piombo G, Dubreucq E, Villeneuve P (2009) Ability of Vasconcellea × heilbornii lipase to catalyse the synthesis of alkyl ester from vegetable oil. Process Biochem 44:1265–1269

    Article  CAS  Google Scholar 

  • Canakci M (2007) The potential of restaurant waste lipids as biodiesel feedstocks. Bioresour Technol 98:183–190

    Article  PubMed  CAS  Google Scholar 

  • Carvalho AKF, Da Rós PCM, Teixeira LF, Andrade GSS, Zanin GM, De Castro HF (2013) Assessing the potential of non-edible oils and residual fat to be used as a feedstock source in the enzymatic ethanolysis reaction. Ind Crops Prod 50:485–493

    Article  CAS  Google Scholar 

  • Carvalho AKF, Faria ELP, Rivaldi JD, Andrade GSS, Oliveira PC, De Castro HF (2015a) Performance of whole-cells lipase derived from Mucor circinelloides as a catalyst in the ethanolysis of non-edible vegetable oils under batch and continuous run conditions. Ind Crops Prod 67:287–294

    Article  CAS  Google Scholar 

  • Carvalho AKF, Rivaldi JD, Barbosa JC, De Castro HF (2015b) Biosynthesis, characterization and enzymatic transesterification of single cell oil of Mucor circinelloides—a sustainable pathway for biofuel production. Bioresour Technol 181:47–53

    Article  PubMed  CAS  Google Scholar 

  • Cazaban D, Wilson L, Betancor L (2017) Lipase immobilization on siliceous supports: Application to synthetic reactions. Curr Org Chem 21:85–92

    Google Scholar 

  • Cesarini S, Diaz P, Nielsen PM (2013) Exploring a new, soluble lipase for FAMEs production in water-containing systems using crude soybean oil as feedstock. Process Biochem 48:484–487

    Article  CAS  Google Scholar 

  • Chang C, Chen J, Chang CJ, Wu T, Shieh C (2009) Optimization of lipase-catalyzed biodiesel by isopropanolysis in a continuous packed-bed reactor using response surface methodology. New Biotechnol 26:187–192

    Article  CAS  Google Scholar 

  • Chen H-C, Ju H-Y, Wu T-T, Liu Y-C, Lee C-C, Chang C, Chung Y-L, Shieh C-J (2011) Continuous production of lipase-catalyzed biodiesel in a packed-bed reactor: optimization and enzyme reuse study. J Biomed Biotechnol. https://doi.org/10.1155/2011/950725

  • Chen G, Liu J, Qi Y, Yao J, Yan B (2016) Biodiesel production using magnetic whole-cell biocatalysts by immobilization of Pseudomonas mendocina on Fe3O4-chitosan. Biochem Eng J 113:86–92

    Article  CAS  Google Scholar 

  • Chisti Y (2006) Bioreactor design. In: Ratledge C, Kristiansen B (eds) Basic Biotechnology. Cambridge University Press, Cambridge, pp 181–200

    Chapter  Google Scholar 

  • Christopher LP, Kumar H, Zambare VP (2014) Enzymatic biodiesel: challenges and opportunities. Appl Energy 119:497–520

    Article  CAS  Google Scholar 

  • Cortez DV, De Castro HF, Andrade GSS (2017) Potential catalytic of mycelium-bound lipase of filamentous fungi in biotransformation processes. Quim Nova 40:85–96

    CAS  Google Scholar 

  • Costa-Silva W, Teixeira LF, Carvalho AKF, Mendes AA, De Castro HF (2014) Influence of feedstock source on the biocatalyst stability and reactor performance in continuous biodiesel production. J Ind Eng Chem 20:881–886

    Article  CAS  Google Scholar 

  • Costa-Silva W, Freitas L, Oliveira PC, De Castro HF (2016) Continuous enzymatic biodiesel production from coconut oil in two-stage packed-bed reactor incorporating an extracting column to remove glycerol formed as by-product. Bioprocess Biosyst Eng 39:1611–1617

    Article  CAS  Google Scholar 

  • Da Rós PCM, Freitas L, Perez VH, De Castro HF (2013) Enzymatic synthesis of biodiesel from palm oil assisted by microwave irradiation. Bioprocess Biosyst Eng 36:443–451

    Article  PubMed  CAS  Google Scholar 

  • Da Rós PCM, Costa-Silva W, Grabauskas D, Perez VH, De Castro HF (2014) Biodiesel from babassu oil: characterization of the product obtained by enzymatic route accelerated by microwave irradiation. Ind Crops Prod 52:313–320

    Article  CAS  Google Scholar 

  • Da Rós PCM, Silva CSP, Silva-Stenico ME, Fiore MF, De Castro HF (2017) Microbial oil derived from filamentous cyanobacterium Trichormus sp. as feedstock to yield fatty acid ethyl esters by enzymatic synthesis. J Adv Biol Biotechnol 12:1–14

    Article  Google Scholar 

  • Daiha KG, Angeli R, de Oliveira SD, Almeida RV (2015) Are lipases still important biocatalysts? A study of scientific publications and patents for technological forecasting. PLoS ONE. https://doi.org/10.1371/journal.pone.0131624

  • De Castro HF, Mendes AA, Santos JC, Aguiar (2004) Modification of oils and fats by biotransformation. Quim Nova 27:146–156

    Google Scholar 

  • De Castro HF, Zanin GM, Moraes FF, Sá-Pereira P (2008) Imobilização de enzimas e sua estabilização In: Bon EPS, Ferrara MA, Corvo ML, Vermelho AB, Paiva CLA, de Alencastro RB, Coelho RRR (eds) Enzimas em biotecnologia: Produção, aplicações e mercado. Rio de Janeiro:Interciência, pp 123–152

    Google Scholar 

  • De Castro HF, Mendes AA, de Freitas L, Santos JC (2010) Modificação enzimática de óleos e gorduras para a obtenção de biocombustíveis e produtos de interesse do setor alimentício. In: Marsaioli AJ, Porto ALM (eds) Biocatálise e biotransformação: Fundamentos e aplicações. São Paulo:Schoba, pp 275–317

    Google Scholar 

  • Dizge N, Keskinler B, Tanriseven A (2009) Biodiesel production from canola oil by using lipase immobilized onto hydrophobic microporous styrene-divinylbenzene copolymer. Biochem Eng J 44:220–225

    Article  CAS  Google Scholar 

  • Dors G, Freitas L, Mendes AA, Furigo A Jr, De Castro HF (2012) Transesterification of palm oil catalyzed by Pseudomonas fluorescens lipase in a packed-bed reactor. Energy Fuels 26:5977–5982

    Article  CAS  Google Scholar 

  • Dossat V, Combes D, Marty A (1999) Continuous enzymatic transesterification of high oleic sunflower oil in a packed bed reactor: influence of the glycerol production. Enzyme Microb Technol 25:194–200

    Article  CAS  Google Scholar 

  • Du W, Xu Y, Liu D, Zeng J (2004) Comparative study on lipase-catalyzed transformation of soybean oil for biodiesel production with different acyl acceptors. J Mol Catal B Enzym 30:125–129

    Article  CAS  Google Scholar 

  • Es I, Vieira JDG, Amaral AC (2015) Principles, techniques, and applications of biocatalyst immobilization for industrial application. Appl Microbiol Biotechnol 99:2065–2082

    Article  PubMed  CAS  Google Scholar 

  • Faber K (2011) In Biotransformations in organic chemistry. Springer, New York, p 436

    Book  Google Scholar 

  • Fan Y, Su F, Li K, Ke C, Yan Y (2017) Carbon nanotube filled with magnetic iron oxide and modified with polyamidoamine dendrimers for immobilizing lipase toward application in biodiesel production. Sci Rep. https://doi.org/10.1038/srep45643

  • Fernandes MLM, Saad EB, Meira JA, Ramos LP, Mitchell DA, Krieger N (2007) Esterification and transesterification reactions catalysed by addition of fermented solids to organic reaction media. J Mol Catal B Enzym 44:8–13

    Article  CAS  Google Scholar 

  • Fidalgo WRR, Ceron A, Freitas L, Santos JC, De Castro HF (2016) A fluidized bed reactor as an approach to enzymatic biodiesel production in a process with simultaneous glycerol removal. J Ind Eng Chem 38:217–223

    Article  CAS  Google Scholar 

  • Firdaus M, Yusoff M, Xu X, Guo Z (2014) Comparison of fatty methyl and ethyl esters as biodiesel base stock: a review on processing and production requirements. J Am Oil Chem Soc 91:525–531

    Article  CAS  Google Scholar 

  • Freire DMG, Castilho LR (2008) Lipases em biocatálise. In: Bon EPS, Ferrara MA, Corvo ML, Vermelho AB, Paiva CLA, de Alencastro RB, Coelho RRR (eds) Enzimas em biotecnologia: Produção, aplicações e mercado. Rio de Janeiro:Interciência, pp 369–386

    Google Scholar 

  • Fu B, Vasudevan PT (2009) Effect of organic solvents on enzyme-catalyzed synthesis of biodiesel. Energy Fuels 23:4105–4111

    Article  CAS  Google Scholar 

  • Fukuda H, Hama S, Tamalampudi S, Noda H (2008) Whole-cell biocatalysts for biodiesel fuel production. Trends Biotechnol 26:668–673

    Article  PubMed  CAS  Google Scholar 

  • Galeano JD, Mitchell DA, Krieger N (2017) Biodiesel production by solvent-free ethanolysis of palm oil catalyzed by fermented solids containing lipases of Burkholderia contaminans. Biochem Eng J 127:77–86

    Article  CAS  Google Scholar 

  • Gamba M, Lapis AAM, Dupont J (2008) Supported ionic liquid enzymatic catalysis for the production of biodiesel. Adv Synth Catal 350:160–164

    Article  CAS  Google Scholar 

  • Ganesan D, Rajendran A, Thangavelu V (2012) Response surface optimization for the transesterification of karanja oil using immobilized whole cells of Rhizopus oryzae in n-hexane system. Biomass Convers Biorefin 2:11–20

    Article  CAS  Google Scholar 

  • Gog A, Roman M, Toşa M, Paizs C, Irimie FD (2012) Biodiesel production using enzymatic transesterification–current state and perspectives. Renew Energy 39:10–16

    Article  CAS  Google Scholar 

  • Guan F, Peng P, Wang G, Yin T, Peng Q, Huang J, Guan G, Li Y (2010) Combination of two lipases more efficiently catalyzes methanolysis of soybean oil for biodiesel production in aqueous medium. Process Biochem 45:1677–1682

    Article  CAS  Google Scholar 

  • Guisán JM (2006) Immobilization of enzymes as the 21st century begins. In: Guisán JM (ed) Immobilization of enzymes and cells. Humana Press, Totowa, 450 p. ISBN: 978–1-58829-290-2

    Google Scholar 

  • Ha SH, Lan MN, Lee SH, Hwang SM, Koo Y-M (2007) Lipase-catalyzed biodiesel production from soybean oil in ionic liquids. Enzyme Microb Technol 41:480–483

    Article  CAS  Google Scholar 

  • Halim SFA, Kamaruddin AH, Fernando WJN (2009) Continuous biosynthesis of biodiesel from waste cooking palm oil in a packed bed reactor: optimization using response surface methodology (RSM) and mass transfer studies. Bioresour Technol 100:710–716

    Article  PubMed  CAS  Google Scholar 

  • Hama S, Numata T, Tamalampudi S, Yoshida A, Noda H, Kondo A, Fukuda H (2009) Use of mono-and diacylglycerol lipase as immobilized fungal whole cells to convert residual partial glycerides enzymatically into fatty acid methyl esters. J Mol Catal B Enzym 58:93–97

    Article  CAS  Google Scholar 

  • Hama S, Tamalampudi S, Yoshida A, Fukuda H, Kondo A (2011) Enzymatic packed-bed reactor integrated with glycerol-separating system for solvent-free production of biodiesel fuel. Biochem Eng J 55:66–71

    Article  CAS  Google Scholar 

  • Hama S, Yoshida A, Tamadani N, Noda H, Kondo A (2013) Enzymatic production of biodiesel from waste cooking oil in a packed-bed reactor: An engineering approach to separation of hydrophilic impurities. Bioresour Technol 135:386–395

    Article  PubMed  CAS  Google Scholar 

  • Hanefeld U, Gardossi L, Magner E (2009) Understanding enzyme immobilization. Chem Soc Rev 38:453–468

    Article  PubMed  CAS  Google Scholar 

  • Hasan F, Shah AA, Hameed A (2009) Methods for detection and characterization of lipases: a comprehensive review. Biotechnol Adv 27:782–798

    Article  PubMed  CAS  Google Scholar 

  • Hill J, Nelson E, Tilman D, Polasky S, Tiffany D (2006) Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc Natl Acad Sci 103:11206–11210

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Iso M, Chen B, Eguchi M, Kudo T, Shrestha S (2001) Production of biodiesel fuel from triglycerides and alcohol using immobilized lipase. J Mol Catal B Enzym 16:53–58

    Article  CAS  Google Scholar 

  • Jaeger KE, Reetz M (1998) Microbial lipases from versatile tools for biotechnology. Trends Biotechnol 16:396–403

    Article  PubMed  CAS  Google Scholar 

  • Jegannathan KR, Abang S, Poncelet D, Chan ES, Ravindra P (2008) Production of biodiesel using immobilized lipase—a critical review. Crit Rev Biotechnol 28:253–264

    Article  PubMed  CAS  Google Scholar 

  • Kandimalla VB, Tripathi VS, Ju HX (2006) Immobilization of biomolecules in sol gels: biological and analytical applications. Crit Rev Anal Chem 36:73–106

    Article  CAS  Google Scholar 

  • Kapoor M, Gupta MN (2012) Lipase promiscuity and its biochemical applications. Process Biochem 47:555–569

    Article  CAS  Google Scholar 

  • Klibanov AM (2001) Improving enzymes by using them in organic solvents. Nature 409:241–246

    Article  PubMed  CAS  Google Scholar 

  • Knothe G, Krahl J, Gerpen J (ed) (2010) The biodiesel handbook, 2nd edn. Academic Press and AOCS Press 494 pp

    Google Scholar 

  • Koh MY, Mohd. Ghazi TI (2011) A review of biodiesel production from Jatropha curcas L. oil. Renewable Sustainable Energy Rev 15:2240–2251

    Google Scholar 

  • Kyeong JS, Yeom SH (2014) Preparation of immobilized whole cell biocatalyst and biodiesel production using a packed-bed bioreactor. Bioprocess Biosyst Eng 37:2189–2198

    Article  PubMed  CAS  Google Scholar 

  • Lee JH, Kwon CH, Kang JW, Park C, Tae B, Kim SW (2009) Biodiesel production from various oils under supercritical fluid conditions by Candida antarctica lipase B using a stepwise reaction method. Appl Biochem Biotechnol 156:454–464

    Article  CAS  Google Scholar 

  • Lee JH, Kim SB, Kang SW, Song YS, Park C, Han SO, Kim SW (2011) Biodiesel production by a mixture of Candida rugosa and Rhizopus oryzae lipases using a supercritical carbon dioxide process. Bioresour Technol 102:2105–2108

    Article  PubMed  CAS  Google Scholar 

  • Lee JH, Kim SB, Yoo HY, Lee JH, Han SO, Park C, Kim SW (2013) Co-immobilization of Candida rugosa and Rhyzopus oryzae lipases and biodiesel production. Korean J Chem Eng 30:1335–1338

    Article  CAS  Google Scholar 

  • Lee M, Lee D, Cho J, Kim S, Park C (2013) Enzymatic biodiesel synthesis in semi-pilot continuous process in near-critical carbon dioxide. Appl Biochem Biotechnol 171:1118–1127

    Article  PubMed  CAS  Google Scholar 

  • Lerin LA, Loss RA, Remonatto D, Zenevicz MC, Balen M, Oenning Netto V, Ninow JL, Trentin CM, Oliveira JV, de Oliveira D (2014) A review on lipase-catalyzed reactions in ultrasound-assisted systems. Bioprocess Biosyst Eng 37:2381–2394

    Article  PubMed  CAS  Google Scholar 

  • Li L, Du W, Liu D, Wang L, Li Z (2006) Lipase-catalyzed transesterification of rapeseed oils for biodiesel production with a novel organic solvent as the reaction medium. J Mol Catal B Enzym 43:58–62

    Article  CAS  Google Scholar 

  • Li W, Du W, Liu D, Yao Y (2008) Study on factors influencing stability of whole cell during biodiesel production in solvent-free and tert-butanol system. Biochem Eng J 41:111–115

    Article  CAS  Google Scholar 

  • Li W, Du W, Li Q, Li R-W, Liu D (2010) Dependence on the properties of organic solvent: study on acyl migration kinetics of partial glycerides. Bioresour Technol 101:5737–5742

    Article  PubMed  CAS  Google Scholar 

  • Lidström P, Tierney J, Wathey B, Westman J (2001) Microwave assisted organic synthesis—a review. Tetrahedron 57:9225–9283

    Article  Google Scholar 

  • Lima LN, Oliveira GC, Rojas MJ, Castro HF, Da Ros PCM, Mendes AA, Giordano RLC, Tardioli PW (2015) Immobilization of Pseudomonas fluorescens lipase on hydrophobic supports and application in biodiesel synthesis by transesterification of vegetable oils in solvent-free systems. J Ind Microbiol Biotechnol 42:523–535

    Article  PubMed  CAS  Google Scholar 

  • López EN, Medina AR, Cerdán LE, Moreno PAG, Sánchez MDM, Grima EM (2016) Fatty acid methyl ester production from wet microalgal biomass by lipase-catalyzed direct transesterification. Biomass Bioenergy 93:6–12

    Article  CAS  Google Scholar 

  • Lotti M, Alberghina L (2007) Lipases: molecular structure and function. In: Polaina J, MacCabe AP (eds) Industrial Enzymes. Springer, Dordrecht, pp 263–281

    Google Scholar 

  • Ma L, Zhou L, Jiang Y, He Y, Wang L, Gao J (2016) Lipase based static emulsions as efficient biocatalyst for biodiesel production. J Chem Technol Biotechnol. https://doi.org/10.1002/jctb.5118

  • Macario A, Verii F, Diaz U, Corma A, Giordano G (2013) Pure silica nanoparticles for liposome/lipase system encapsulation: application in biodiesel production. Catal Today 204:148–155

    Article  CAS  Google Scholar 

  • Marcon NS, Colet R, Balen DS, de Pereira CMP, Bibilio D, Priamo W, Bender JP, Steffens C, Rosa CD (2017) Enzymatic biodiesel production from microalgae biomass using propane as pressurized fluid. Can J Chem Eng 95:1340–1344

    Article  CAS  Google Scholar 

  • Mazou M, Djossou AJ, Tchobo FP, Villeneuve P, Soumanou MM (2016) Plant latex lipase as biocatalysts for biodiesel production. Afr J Biotechnol 15:1487–1502

    Article  CAS  Google Scholar 

  • Mendes AA, Oliveira PC, De Castro HF (2012) Properties and biotechnological applications of porcine pancreatic lipase. J Mol Catal B Enzym 78:119–134

    Google Scholar 

  • Meunier SM, Legge RL (2012) Evaluation of diatomaceous earth supported lipase sol–gels as a medium for enzymatic transesterification of biodiesel J Mol Catal B: Enzym 77:92–97

    Google Scholar 

  • Meunier SM, Kariminia H-R, Legge RL (2017) Immobilized enzyme technology for biodiesel production. In: Singh LK, Chaudhary G (eds) Advances in biofeedstocks and biofuels: production technologies for biofuels. Wiley, New Jersey, pp 67–106

    Google Scholar 

  • Michelin S, Penha FM, Sychiosky MM, Scherer RP, Treichel H, Valério A, Di Luccio M, de Oliveira D, Oliveira JV (2015) Kinetics of ultrasound-assisted enzymatic biodiesel production from macauba coconut oil. Renew Energy 76:388–393

    Article  CAS  Google Scholar 

  • Milner SE, Maguire AR (2012) Recent trends in whole cell and isolated enzymes in enantioselective synthesis. Arkivoc i:321–382

    Google Scholar 

  • Mittelbach M (1990) Lipase catalyzed alcoholysis of sunflower oil. J Am Oil Chem Soc 67:168–170

    Article  CAS  Google Scholar 

  • Moreira ABR, Perez VH, Zanin GM, De Castro HF (2007) Biodiesel synthesis by enzymatic transesterification of palm oil with ethanol using lipases from several sources immobilized on silica-PVA composite. Energy Fuels 21:3689–3694

    Article  CAS  Google Scholar 

  • Mounguengui RWM, Brunschwig C, Baréa B, Villeneuve P, Blin J (2013) Are plant lipases a promising alternative to catalyze transesterification for biodiesel production? Prog Energy Combust Sci 39:441–456

    Article  Google Scholar 

  • Nelson LA, Foglia TA, Marmer WN (1996) Lipase-catalyzed production of biodiesel. J Am Oil Chem Soc 73:1191–1195

    Article  CAS  Google Scholar 

  • Nie K, Xie F, Wang, F, Tan T (2006) Lipase catalyzed methanolysis to produce biodiesel: optimization of the biodiesel production. J Mol Catal B: Enzym 43:142–147

    Google Scholar 

  • Nielsen PM (2014) Enzyme-catalyzed biodiesel made from low-quality oils. Retrieved from: http://www.biodieselmagazine.com/articles/127509/enzymecatalyzedbiodieselmadefromlowqualityoils

  • Nielsen PM, Rancke-Madsen A (2011) Enzymatic large-scale production of biodiesel. Lipid Technol 23:230–233

    Article  CAS  Google Scholar 

  • Nielsen PM, Brask J, Fjerbaek L (2008) Enzymatic biodiesel production: technical and economical considerations. Eur J Lipid Sci Technol 110:692–700

    Google Scholar 

  • Nielsen PM, Rancke-Madsen A, Holm HC, Burton R (2016) Production of biodiesel using liquid lipase formulations. J Am Oil Chem Soc 93:905–910

    Article  CAS  Google Scholar 

  • Nordblad M, Silva VTL, Nielsen PM, Woodley JM (2014) Identification of critical parameters in liquid enzyme-catalyzed biodiesel production. Biotechnol Bioeng 111:2446–2453

    Article  PubMed  CAS  Google Scholar 

  • Ognjanovic N, Bezbradica D, Knezevic-Jugovic Z (2009) Enzymatic conversion of sunflower oil to biodiesel in a solvent-free system: Process optimization and the immobilized system stability. Bioresour Technol 100:5146–5154

    Article  PubMed  CAS  Google Scholar 

  • Pandey S, Mishra SB (2011) Sol-gel derived organic-inorganic hybrid materials: synthesis, characterization and applications. J Sol-Gel Sci Technol 59:73–94

    Article  CAS  Google Scholar 

  • Patel A, Arora N, Mehtami J, Pruthi V, Pruthi PA (2017) Assessment of fuel properties on the basis of fatty acid profiles of oleaginous yeast for potential biodiesel production. Renew Sustain Energy Rev 77:604–616

    Article  CAS  Google Scholar 

  • Paula AV, Urioste D, Santos JC, De Castro HF (2007) Porcine pancreatic lipase immobilized on polysiloxane-polyvinyl alcohol hybrid matrix: catalytic properties and feasibility to mediate synthesis of surfactants and biodiesel. J Chem Technol Biotechnol 82:281–288

    Article  CAS  Google Scholar 

  • Perez VH, Silveira Junior EG, Cubides DC, David GF, Justo OR, Castro MPP, Sthel MS, de Castro HF (2014) Trends in biodiesel production: Present status and future directions. In: da Silva S, Chandel A (eds) Biofuels in Brazil. Springer, Cham, pp 281–302

    Google Scholar 

  • Perkins C, Siddiqui S, Puri M, Demain AL (2015) Biotechnological applications of microbial bioconversions. Crit Rev Biotechnol. https://doi.org/10.3109/07388551.2015.1083943

  • Pierre AC (2004) The sol gel encapsulation of enzymes. Biocatal Biotransfor 22:145–170

    Article  CAS  Google Scholar 

  • Pinto AC, Guarieiro LLN, Rezende MJC, Ribeiro NM, Torres EA, Lopes WA, Pereira PA, de Andrade JB (2005) Biodiesel: an overview. J Braz Chem Soc 16:1313–1330

    Article  CAS  Google Scholar 

  • Poppe JK, Fernandez-Lafuente R, Rodrigues RC, Ayub MAZ (2015a) Enzymatic reactors for biodiesel synthesis: present status and future prospects. Biotechnol Adv 33:2011–2235

    Article  CAS  Google Scholar 

  • Poppe JK, Matte CR, Peralba MCR, Fernandez-Lafuente R, Rodrigues RC, Ayub MAZ (2015b) Optimization of ethyl ester production from olive and palm oils using mixtures of immobilized lipases. Appl Catal A 490:50–56

    Article  CAS  Google Scholar 

  • Quintella CM, Teixeira LSG, Korn MGA, Neto PRC, Torres EA, Castro MP, Jesus CAC (2009) Cadeia do biodiesel da bancada à indústria: Uma visão geral com prospecção de tarefas e oportunidades para P&D&I. Quim Nova 32:793–808

    Article  CAS  Google Scholar 

  • Ramos MJ, Fernández CM, Casas A, Rodríguez L, Pérez Á (2009) Influence of fatty acid composition of raw materials on biodiesel properties. Bioresour Technol 100:261–268

    Article  PubMed  CAS  Google Scholar 

  • Ramos L, Martin LS, Santos JC, De Castro HF (2017) Combined use of a two-stage packed bed reactor with a glycerol extraction column for enzymatic biodiesel synthesis from macaw palm oil. Ind Eng Chem Res 56:1–7

    Article  CAS  Google Scholar 

  • Ranganathan SV, Narasimhan SL, Muthukumar K (2008) An overview of enzymatic production of biodiesel. Bioresour Technol 99:3975–3981

    Article  PubMed  CAS  Google Scholar 

  • Reetz MT, Zonta A, Simpelkamp J (1996) Efficient immobilization of lipases by entrapment in hydrophobic sol-gel materials. Biotechnol Bioeng 49:527–534

    Article  PubMed  CAS  Google Scholar 

  • Reis CER, Hu B (2017) Vinasse from sugarcane ethanol production: better treatment or better utilization? Frontiers in Energy Research. http://journal.frontiersin.org/article/10.3389/fenrg.2017.00007

  • Reis P, Holmberg K, Watzke H, Leser ME, Miller R (2009) Lipases at interfaces: a review. Adv Colloid Interface Sci 147–148:237–250

    Article  PubMed  CAS  Google Scholar 

  • Ribeiro BD, De Castro AM, Coelho MAS, Freire DMG (2011) Production and use of lipases in bioenergy: a review from the feedstocks to biodiesel production. Enzyme Res 2011:1–16

    Google Scholar 

  • Robles-Medina A, González-Moreno PA, Esteban-Cerdán L, Molina-Grima E (2009) Biocatalysis: towards ever greener biodiesel production. Biotechnol Adv 27:398–408

    Article  PubMed  CAS  Google Scholar 

  • Royon D, Daz M, Ellenrieder G, Locatelli S (2007) Enzymatic production of biodiesel from cotton seed oil using t-butanol as a solvent. Bioresour Technol 98:648–653

    Article  PubMed  CAS  Google Scholar 

  • Rufino AR, Biaggio FC, Santos JC, De Castro HF (2010) Screening of lipases for the synthesis of xylitol monoesters by chemoenzymatic esterification and the potential of microwave and ultrasound irradiations to enhance the reaction rate. Int J Biol Macromol 47:5–9

    Article  PubMed  CAS  Google Scholar 

  • Salis A, Monduzzi M, Solinas V (2007) Use of lipases for the production of biodiesel. In: Polaina J, MacCabe AP (eds) Ind Enzymes. Springer, Dordrecht, pp 317–339

    Chapter  Google Scholar 

  • Salis A, Pinna M, Monduzzi M, Solinas V (2008) Comparison among immobilised lipases on macroporous polypropylene toward biodiesel synthesis. J Mol Catal B Enzym 54:19–26

    Article  CAS  Google Scholar 

  • Salum TFC, Villeneuve P, Barea B, Yamamoto CI, Côcco LC, Mitchell DA, Krieger N (2010) Synthesis of biodiesel in column fixed-bed bioreactor using the fermented solid produced by Burkholderia cepacian LTEB11. Process Biochem 45:1348–1354

    Article  CAS  Google Scholar 

  • Samuneva B, Kabaivanova L, Chernev G, Djambaski P, Kashchieva E, Emanuilova E, Salvado IMM, Fernandes MHV, Wu A (2008) Sol-gel synthesis and structure of silica hybrid materials. J Sol-Gel Sci Technol 48:73–79

    Article  CAS  Google Scholar 

  • Santos FP, Rodrigues S, Fernandes FAN (2009) Optimization of the production of biodiesel from soybean ultrasound assisted methanolysis. Fuel Process Technol 90:312–316

    Article  CAS  Google Scholar 

  • Sendzikiene E, Sinkuniene D, Kazanceva I, Kazancev K (2016) Optimization of low quality rapessed oil transesterification with butanol by applying the response surface methodology. Renew Energy 87:266–272

    Article  CAS  Google Scholar 

  • Shah S, Sharma S, Gupta MN (2004) Biodiesel preparation by lipase-catalyzed transesterification of jatropha oil. Energy Fuels 18:154–159

    Article  CAS  Google Scholar 

  • Shaw JF, Chang S-W, Lin S-C, Wu T-T, Ju H-Y, Akoh CC, Chang R-H, Shieh CJ (2008) Continuous enzymatic synthesis of biodiesel with Novozym 435. Energy Fuels 22:840–844

    Article  CAS  Google Scholar 

  • Sheldon RA (2007) Enzyme Immobilization: The quest for optimum performance. Adv Synth Catal 349:1289–1307

    Article  CAS  Google Scholar 

  • Sheldon RA, van Pelt S (2013) Enzyme immobilisation in biocatalysis: why, what and how. Chem Soc Rev 42:6223–6235

    Article  PubMed  CAS  Google Scholar 

  • Shimada Y, Watanabe Y, Samukawa T, Sugihara A, Noda H, Fukuda H, Tominaga Y (1999) Conversion of vegetable oil to biodiesel using immobilized Candida antarctica lipase. J Am Oil Chem Soc 76:789–793

    Article  CAS  Google Scholar 

  • Shimada Y, Watanabe Y, Sugihara A, Tominaga Y (2002) Enzymatic alcoholysis for biodiesel fuel production and application of the reaction to oil processing. J Mol Catal B Enzym 17:133–142

    Article  CAS  Google Scholar 

  • Shuai W, Das RK, Naghdi M, Brar SK, Verma M (2017) A review on the important aspects of lipase immobilization on nanomaterials. Biotechnol Appl Biochem 64:496–508

    Article  PubMed  CAS  Google Scholar 

  • Sim JH, Kamaruddin AH, Bhatia S (2010) Biodiesel (FAME) productivity, catalytic efficiency and termal stability of Lipozyme TL IM for crude palm oil transesterification with methanol. J Am Oil Chem Soc 87:1027–1034

    Article  CAS  Google Scholar 

  • Simões AS, Ramos L, Freitas L, Santos JC, Zanin GM, De Castro HF (2015) Performance of an enzymatic packed bed reactor running on babassu oil to yield fatty ethyl esters (FAEE) in a solvent-free system. Biofuel Res J 6:242–247

    Article  Google Scholar 

  • Soares MS, Rico ALL, Andrade GSS, De Castro HF, Oliveira PC (2017) Synthesis, characterization and application of a polyurethane-base support for immobilizing membrane-bound lipase. Braz J Chem Eng 34:29–39

    Article  Google Scholar 

  • Souza JS, Cavalcanti-Oliveira EA, Aranda DAG, Freire DMG (2010) Application of lipase from the physic nut (Jatropha curcas L.) to a new hybrid (enzyme/chemical) hydroesterification process for biodiesel production. J Mol Catal B Enzym 65:133–137

    Article  CAS  Google Scholar 

  • Souza LTA, Mendes AA, De Castro HF (2016) Selection of lipases for the synthesis of biodiesel from jatropha oil and the potential of microwave irradiation to enhance the reaction rate. BioMed Res Int. https://doi.org/10.1155/2016/1404567

  • Su F, Li G-L, Fan Y-L, Yan Y-J (2015) Enhancing biodiesel production via a synergic effect between immobilized Rhizopus oryzae lipase and Novozym 435. Fuel Process Technol 137:298–304

    Article  CAS  Google Scholar 

  • Su F, Li G, Fan Y, Yan Y (2016) Enhanced performance of lipase via microcapsulation and its application in biodiesel preparation. Sci Rep. https://doi.org/10.1038/srep29670

  • Tacias-Pascacio VG, Virgen-Ortíz JJ, Jiménez-Pérez M, Yates M, Torrestiana-Sanchez B, Rosales-Quintero A, Fernandez-Lafuente R (2017) Evaluation of different lipase biocatalysts in the production of biodiesel from used cooking oil: critical role of the immobilization support. Fuel 200:1–10

    Article  CAS  Google Scholar 

  • Talebi AF, Mohtashami SK, Tabatabaei M, Tohidfar M, Bagheri A, Zeinalabedini M, Mirzaei HH, Mirzajanzadeh M, Shafaroudi SM, Bakhtiari S (2013) Fatty acids profiling: a selective criterion for screening microalgae strains for biodiesel production. Algal Res 2:258–267

    Article  Google Scholar 

  • Talukder MMR, Wu JC, Fen NM, Melissa YLS (2010a) Two-step lipase catalysis for production of biodiesel. Biochem Eng J 49:207–212

    Article  CAS  Google Scholar 

  • Talukder MMR, Wu JC, Chua LP-L (2010b) Conversion of waste cooking oil to biodiesel via enzymatic hydrolysis followed by chemical esterification. Energy Fuels 24:2016–2019

    Article  CAS  Google Scholar 

  • Talukder MMR, Lee HZS, Low RF, Pei-Lyn LC, Warzecha D, Wu J (2013) Potential use of whole cell lipase from a newly isolated Aspergillus nomius for methanolysis of palm oil to biodiesel. J Mol Catal B Enzym 89:108–113

    Article  CAS  Google Scholar 

  • Ting W-J, Huang C-M, Giridhar N, Wu W-T (2008) An enzymatic/acid catalyzed hybrid process for biodiesel production from soybean oil. J Chin Inst Chem Eng, 39:203–210

    Article  CAS  Google Scholar 

  • Tiosso PC, Carvalho AKF, De Castro HF, de Moraes FF, Zanin GM (2014) Utilization of immobilized lipases as catalysts in the transesterification of non-edible vegetable oils with ethanol. Braz J Chem Eng 31:839–847

    Article  Google Scholar 

  • Tongboriboon K, Cheirsilp B, A-Kittikun A (2010) Mixed lipases for efficient enzymatic synthesis of biodiesel from used palm oil and ethanol in a solvent-free system. J Mol Catal B: Enzym 67:52–29

    Google Scholar 

  • Tran D-T, Chen C-L, Chang J-S (2016) Continuous biodiesel conversion via enzymatic transesterification catalyzed by immobilized Burkholderia lipase in a packed-bed bioreactor. Appl Energy 168:340–350

    Article  CAS  Google Scholar 

  • Treichel H, de Oliveira D, Mazutti MA, Di Luccio M, Oliveira JV (2010) A review on microbial lipases production. Food Bioprocess Technol 3:182–196

    Article  CAS  Google Scholar 

  • Villeneuve P (2003) Plant lipases and their applications in oils and fats modification. Eur J Lipid Sci Technol 105:308–317

    Article  CAS  Google Scholar 

  • Villeneuve P, Muderhwa JM, Graille J, Haas MJ (2000) Customizing lipases for biocatalysis: a survey of chemical physical and molecular biological approaches. J Mol Catal B Enzym 9:113–148

    Article  CAS  Google Scholar 

  • Wang Y, Wu H, Zong MH (2008) Improvement of biodiesel production by Lipozyme TL IM-catalyzed methanolysis using response surface methodology and acyl migration enhancer. Bioresour Technol 99:7232–7237

    Article  PubMed  CAS  Google Scholar 

  • Watanabe Y, Shimada Y, Sugihara A, Noda H, Fukuda H, Tominaga (2000) Continuous production of biodiesel fuel from vegetable oil using immobilized Candida antarctica lipase. J Am Oil Chem Soc 77:355–360

    Google Scholar 

  • Watanabe Y, Nagao T, Nishida Y, Takagi Y, Shimada Y (2007) Enzymatic production of fatty acid methyl esters by hydrolysis of acid oil followed by esterification. J Am Oil Chem Soc 84:1015–1021

    Article  CAS  Google Scholar 

  • Winayanuwattikun P, Kaewpiboon C, Piriyakananon K, Tantong S, Thakernkarnkit W, Chulalaksananukul W, Yongvanich T (2008) Potential plant oil feedstock for lipase-catalyzed biodiesel production in Thailand. Biomass Bioenergy 32:1279–1286

    Article  CAS  Google Scholar 

  • Xiao M, Mathew S, Obbard PA (2010) A newly isolated fungal strain used as whole-cell biocatalyst for biodiesel production from palm oil. Global Change Biology Bioenergy 2:45–51

    Article  CAS  Google Scholar 

  • Xu Y, Norbdblad M, Nielsen PM, Brask J, Woodley JM (2011) In situ visualization and effect of glycerol in lipase-catalyzed ethanolysis of rapeseed oil. J Mol Catal B Enzym 72:213–219

    Article  CAS  Google Scholar 

  • Xu Y, Nordblad M, Woodley JM (2012) A two-stage enzymatic ethanol-based biodiesel production in a packed bed reactor. J Biotechnol 162:407–414

    Article  PubMed  CAS  Google Scholar 

  • Yahya ARM, Anderson WA, Moo-Young M (1998) Ester synthesis in lipase-catalyzed reactions. Enzyme Microb Technol 23:438–450

    Article  CAS  Google Scholar 

  • Yücel Y, Demir C (2012) The optimization of immobilized lipase-catalyzed transesterification of canola oil by response surface methodology and mixture design. Energy Sources Part A 34:2031–2040

    Article  CAS  Google Scholar 

  • Zago E, Botton V, Alberton D, Córdova J, Yamamoto CI, Côcco LC, Mitchell DA, Krieger N (2014) Synthesis of ethylic esters for biodiesel purposes using lipases naturally immobilized in a fermented solid produced using Rhizopus microspores. Energy Fuels 28:5197–5203

    Article  CAS  Google Scholar 

  • Zanin GM, Moraes FF (2014) Enzimas imobilizadas. In: Said S, Pietro RCLR (eds) Enzimas como agentes biotecnológicos. Ribeirão Preto, Legis Summa, pp 35–85

    Google Scholar 

  • Zeng L, He Y, Jiao L, Li K, Yan Y (2017) Preparation of biodiesel with liquid synergetic lipases from rapessed oil deodorizerd distillate. Appl Biochem Biotechnol. https://doi.org/10.1007/s12010-017-2463-y

  • Zhao T, No DS, Kim Y, Kim YS, Kim I-H (2014) Novel strategy for lipase-catalyzed synthesis of biodiesel using blended alcohol as an acyl acceptor. J Mol Catal B Enzym 107:17–22

    Article  CAS  Google Scholar 

  • Zheng Y, Quan J, Ning X, Zhu L-M, Jiang B, He Z-Y (2009) Lipase-catalyzed transesterification of soybean oil for biodiesel production in tert-amyl alcohol. World J Microbiol Biotechnol 25:41–46

    Article  CAS  Google Scholar 

  • Zhou G, Chen G, Yan B (2015) Two-step biocatalytic process using lipase and whole cell catalysts for biodiesel production from unrefined jatropha oil. Biotechnol Lett 10

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heizir F. De Castro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cortez, D.V., Reis, C., Perez, V.H., De Castro, H.F. (2018). The Realm of Lipases in Biodiesel Production. In: Singh, O., Chandel, A. (eds) Sustainable Biotechnology- Enzymatic Resources of Renewable Energy. Springer, Cham. https://doi.org/10.1007/978-3-319-95480-6_10

Download citation

Publish with us

Policies and ethics