Skip to main content

The Scientific Method as a Point of Departure in Aging Research

  • Chapter
  • First Online:

Abstract

What makes knowledge scientific is not its content per se but rather the form, in which it is obtained. Following the scientific method is a necessary condition to carry out a sound and methodologically valid research. However, for empirical researchers, it is not common practice to reflect upon the method itself. It has been argued that the scientific method is not so different from the common sense that we use in daily life to reach solutions, but with its successive steps better articulated so that scientific knowledge can approach more robust conclusions over time. Since the last quarter of the previous century, there are indications that reductionist strategy of the scientific method has reached its limits, and that therefore a complementary approach is needed to investigate new complex research problems. Consequently, emergentism and systemic thinking are becoming a new explanatory framework that is currently permeating virtually any field of knowledge and all spatiotemporal scales. In the present chapter, we focus on a very specific system under a rather specific yet common and relevant condition: the aging human being. Particularly, we introduce some notions on how the sciences of complexity can help, not only clinicians but also medical research in general –and in particular aging research– to reach a more complete understanding and assessment of the older adult both at an individual and population levels.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Chalmers AF (1999) What is this thing called science? 3rd edn. Hackett Pub, Indianapolis

    Google Scholar 

  2. Kosso P (2011) A summary of scientific method. https://doi.org/10.1007/978-94-007-1614-8

    Book  Google Scholar 

  3. Hanson NR (1965) Patterns of discovery: an inquiry into the conceptual foundations of science. CUP Archive, Cambridge

    Google Scholar 

  4. Popper KR (1935) Logik der Forschung: zur Erkenntnistheorie der moderner Naturwissenschaft

    Google Scholar 

  5. Lakatos I (1969) The problem of inductive logic, proceedings of the international colloquium in the philosophy of science, London, 1965, vol II. North-Holland, Amsterdam

    Google Scholar 

  6. Jarrard RD (2001) Scientific methods, an online book. University of Utah, Salt Lake City Google Scholar

    Google Scholar 

  7. Kuhn TS (1970) The structure of scientific revolutions. University of Chicago Press, Chicago, pp 84–85

    Google Scholar 

  8. Box GE, Hunter JS, Hunter WG (2005) Statistics for experimenters: design, innovation, and discovery. Wiley Interscience, New York

    Google Scholar 

  9. Gauch HG (2003) Scientific method in practice. Cambridge University Press, Cambridge

    Google Scholar 

  10. McComas WF (2006) The nature of science in science education: rationales and strategies. Springer Science & Business Media, Berlin

    Google Scholar 

  11. Heisenberg W (1962) Physics and philosophy: the revolution in modern science [1958]; rpt. Harper & Row, New York

    Google Scholar 

  12. Carroll SM (2016) The big picture: on the origins of life, meaning, and the universe itself. Dutton est. 1852, an imprint of Penguin Random House LLC, New York

    Google Scholar 

  13. Anderson PW (1972) More is different. Science 177:393–396. https://doi.org/10.1126/science.177.4047.393

    Article  CAS  PubMed  Google Scholar 

  14. Anderson PW (2011) More and different: notes from a thoughtful Curmudgeon. World Scientific, Hackensack

    Book  Google Scholar 

  15. Zolli A, Healy AM (2013) Resilience: why things bounce back. Simon and Schuster, New York

    Google Scholar 

  16. Carpenter SR, Cole JJ, Pace ML, Batt R, Brock WA, Cline T, Coloso J, Hodgson JR, Kitchell JF, Seekell DA, Smith L, Weidel B (2011) Early warnings of regime shifts: a whole-ecosystem experiment. Science 332:1079–1082. https://doi.org/10.1126/science.1203672

    Article  CAS  PubMed  Google Scholar 

  17. Scheffer M, Carpenter S, Foley JA, Folke C, Walker B (2001) Catastrophic shifts in ecosystems. Nature 413:591–596. https://doi.org/10.1038/35098000

    Article  CAS  PubMed  Google Scholar 

  18. Scheffer M, Bascompte J, Brock WA, Brovkin V, Carpenter SR, Dakos V, Held H, van Nes EH, Rietkerk M, Sugihara G (2009) Early-warning signals for critical transitions. Nature 461:53–59. https://doi.org/10.1038/nature08227

    Article  CAS  PubMed  Google Scholar 

  19. Scheffer M, Carpenter SR, Lenton TM, Bascompte J, Brock W, Dakos V, van de Koppel J, van de Leemput IA, Levin SA, van Nes EH, Pascual M, Vandermeer J (2012) Anticipating critical transitions. Science 338:344–348. https://doi.org/10.1126/science.1225244

    Article  CAS  PubMed  Google Scholar 

  20. Scheffer M (2009) Critical transitions in nature and society. Princeton University Press, Princeton

    Google Scholar 

  21. Gershenson C (2008) Complexity: 5 questions

    Google Scholar 

  22. Wiener N (1961) Cybernetics or control and communication in the animal and the machine. MIT press, Cambridge

    Google Scholar 

  23. Ashby WR (1957) An introduction to cybernetics. 2nd edn. Chapman & Hall Ltd, London

    Google Scholar 

  24. Bertalanffy LV (1968) General system theory, Foundations, Development, Applications. George Braziller, New York

    Google Scholar 

  25. Thom R (1975) Structural stability and morphogenesis: an outline of a general theory of models (trans. Fowler DH). Benjamin, Reading

    Google Scholar 

  26. Omran AR (2005) The epidemiologic transition: a theory of the epidemiology of population change. 1971. Milbank Q 83:731–757. https://doi.org/10.1111/j.1468-0009.2005.00398.x

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ahn AC, Tewari M, Poon C-S, Phillips RS (2006) The limits of reductionism in medicine: could systems biology offer an alternative? PLoS Med 3:e208. https://doi.org/10.1371/journal.pmed.0030208

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ahn AC, Tewari M, Poon C-S, Phillips RS (2006) The clinical applications of a systems approach. PLoS Med 3:e209. https://doi.org/10.1371/journal.pmed.0030209

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hayflick L (1994) How and why we age. Ballantine Books, New York

    Google Scholar 

  30. Bulterijs S, Hull RS, Björk VC, Roy AG (2015) It is time to classify biological aging as a disease. Front Genet 6:205

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hayflick L (2007) Biological aging is no longer an unsolved problem. Ann N Y Acad Sci 1100:1–13. https://doi.org/10.1196/annals.1395.001

    Article  CAS  PubMed  Google Scholar 

  32. Medawar PB (1957) Uniqueness of the individual. Methuen, London

    Book  Google Scholar 

  33. Kirkwood TBL (2005) Understanding the odd science of aging. Cell 120:437–447. https://doi.org/10.1016/j.cell.2005.01.027

    Article  CAS  PubMed  Google Scholar 

  34. Mossman KL (2014) The complexity paradox: the more answers we find, the more questions we have. Oxford University Press, New York

    Google Scholar 

  35. Cohen AA (2016) Complex systems dynamics in aging: new evidence, continuing questions. Biogerontology 17:205–220. https://doi.org/10.1007/s10522-015-9584-x

    Article  CAS  PubMed  Google Scholar 

  36. Mitnitski AB, Rutenberg AD, Farrell S, Rockwood K (2017) Aging, frailty and complex networks. Biogerontology 18:433–446. https://doi.org/10.1007/s10522-017-9684-x

    Article  CAS  PubMed  Google Scholar 

  37. Rutenberg AD, Mitnitski AB, Farrell SG, Rockwood K (2017) Unifying aging and frailty through complex dynamical networks. Exp Gerontol. https://doi.org/10.1016/j.exger.2017.08.027

    Article  PubMed  Google Scholar 

  38. Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottdiener J, Seeman T, Tracy R, Kop WJ, Burke G, MA MB, Cardiovascular Health Study Collaborative Research Group (2001) Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci 56:M146–M156. https://doi.org/10.1093/gerona/56.3.M146

    Article  CAS  PubMed  Google Scholar 

  39. Rockwood K, Song X, MacKnight C, Bergman H, Hogan DB, McDowell I, Mitnitski A (2005) A global clinical measure of fitness and frailty in elderly people. CMAJ 173:489–495. https://doi.org/10.1503/cmaj.050051

    Article  PubMed  PubMed Central  Google Scholar 

  40. Fried LP, Walston JD, Ferrucci L (2009) Hazzard’s geriatric medicine and gerontology. Halter, JB, pp 631–646

    Google Scholar 

  41. Parvaneh S, Howe CL, Toosizadeh N, Honarvar B, Slepian MJ, Fain M, Mohler J, Najafi B (2015) Regulation of cardiac autonomic nervous system control across frailty statuses: a systematic review. Gerontology 62:3–15. https://doi.org/10.1159/000431285

    Article  PubMed  Google Scholar 

  42. Romero-Ortuno R, Cogan L, O’shea D, Lawlor BA, Kenny RA (2011) Orthostatic haemodynamics may be impaired in frailty. Age Ageing 40:576–583

    Article  PubMed  Google Scholar 

  43. Kim DH, Kim JA, Choi YS, Kim SH, Lee JY, Kim YE (2010) Heart rate variability and length of survival in hospice cancer patients. J Korean Med Sci 25:1140–1145. https://doi.org/10.3346/jkms.2010.25.8.1140

    Article  PubMed  PubMed Central  Google Scholar 

  44. Brandan ME, Ávila MA, Fossion R, Zapata-Fonseca L (2018) Una mirada a la investigación futura en Física Médica en México. In: Torres Labansat M (ed) Hacia dónde va la Física en México? Fondo Cultural Económico (in print)

    Google Scholar 

  45. Lipsitz LA (1992) Loss of “complexity” and aging. JAMA 267:1806. https://doi.org/10.1001/jama.1992.03480130122036

    Article  CAS  PubMed  Google Scholar 

  46. Goldberger AL (1996) Non-linear dynamics for clinicians: chaos theory, fractals, and complexity at the bedside. Lancet 347:1312–1314

    Article  CAS  PubMed  Google Scholar 

  47. Goldberger AL, Amaral LAN, Hausdorff JM, Ivanov PC, Peng CK, Stanley HE (2002) Fractal dynamics in physiology: alterations with disease and aging. Proc Natl Acad Sci U S A 99(Suppl 1):2466–2472. https://doi.org/10.1073/pnas.012579499

    Article  PubMed  PubMed Central  Google Scholar 

  48. Goldberger AL (2006) Giles F. filley lecture. complex systems. Proc Am Thorac Soc 3:467–471. https://doi.org/10.1513/pats.200603-028MS

    Article  PubMed  PubMed Central  Google Scholar 

  49. Parati G, Ochoa JE, Lombardi C, Bilo G (2013) Assessment and management of blood-pressure variability. Nat Rev Cardiol 10:143–155. https://doi.org/10.1038/nrcardio.2013.1

    Article  PubMed  Google Scholar 

  50. Modell H, Cliff W, Michael J, McFarland J, Wenderoth MP, Wright A (2015) A physiologist’s view of homeostasis. Adv Physiol Educ 39:259–266. https://doi.org/10.1152/advan.00107.2015

    Article  PubMed  PubMed Central  Google Scholar 

  51. Fossion R, Fossion JPJ, Rivera AL, Lecona OA, Toledo-Roy JC, García-Pelagio KP, García-Iglesias L, Estañol B (2018a) Homeostasis from a time-series perspective: an intuitive interpretation of the variability of physiological variables. In: Olivares-Quiroz L, Resendis-Antonio O (eds) Quantitative models for microscopic to macroscopic biological macromolecules and tissues. Springer International Publishing, Cham, pp 87–109

    Chapter  Google Scholar 

  52. Fossion R, Sáenz-Burrola A, Zapata-Fonseca L (2018b) On the stability and adaptability of human physiology: Gaussians meet heavy-tailed distributions. INTERdisciplina (CEIICH-UNAM), IN PRESS

    Google Scholar 

  53. Fossion R, Rivera AL, Estañol B (2018c) Homeostasis from a physicist point of view: what time series of continuous monitoring tell us about physiological regulation, Physiol. Meas., SUBMITTED

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rubén Fossion .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fossion, R., Zapata-Fonseca, L. (2018). The Scientific Method as a Point of Departure in Aging Research. In: García-Peña, C., Gutiérrez-Robledo, L., Pérez-Zepeda, M. (eds) Aging Research - Methodological Issues. Springer, Cham. https://doi.org/10.1007/978-3-319-95387-8_2

Download citation

Publish with us

Policies and ethics