Skip to main content

Vitamins B6-, C-, and E-Enriched Crops

  • Chapter
  • First Online:
Book cover Nutritional Quality Improvement in Plants

Abstract

Bourgeoning population and global climate change have put a tough challenge of feeding a large number of undernourished (with insufficient calorie intake) and malnourished (with limited or no access to essential micronutrients, vitamins, and minerals, causing the so-called hidden hunger) people globally. During the last few decades, the increase in production of calorie-rich staple food crops has resulted in a decrease in the number of undernourished people from over 1 billion to less than 800 million. However, no such equivalent increase in the production of non-staple foods (pulses, vegetables, fruits, and animal products) has been seen. The micronutrient malnutrition is still affecting more than 2 billion people or one-in-three people globally. Further, staple food crops are poor in vitamins that are further lost during storage, processing, and cooking. Vitamin deficiencies are prevalent in people who are solely dependent on staple crops for their diet and cannot afford diversified diet and have limited access to supplementation (multivitamin pills) or fortified food (addition of vitamins to food). Vitamin deficiencies in human cause severe physical and mental damages and are associated with enormous economic losses. Biofortification is a cost-effective and sustainable alternative to enhance vitamins in edible parts of the plant through breeding or metabolic engineering. The present chapter focuses on three relevant vitamins, B6, C, and E. An overview of their role in plants, metabolism, rational behind biofortification, and advances in manipulation of their contents in plants by the maker-assisted selection and metabolic engineering is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agius F, González-Lamothe R, Caballero JL, Muñoz-Blanco J, Botella MA et al (2003) Engineering increased vitamin C levels in plants by overexpression of a D-galacturonic acid reductase. Nat Biotechnol 21:177–181

    Article  CAS  PubMed  Google Scholar 

  • Almeida J, Quadrana L, Asıs R, Setta N, de Godoy F, Bermudez L, Otaiza SN, Correada SJV, Fernie AR, Carrari F, Rossi M (2011) Genetic dissection of vitamin E biosynthesis in tomato. J Exp Bot 62:3781–3798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Almeida J, Azevedo MS, Spicher L, Glauser G, Dorp K, Guyer L, Carranza AV et al (2016) Down-regulation of tomato PHYTOL KINASE strongly impairs tocopherol biosynthesis and affects prenyllipid metabolism in an organ-specific manner. J Exp Bot 67:919–934

    Article  CAS  PubMed  Google Scholar 

  • Amaya I, Osorio S, Martinez-Ferri E, Lima-Silva V, Doblas VG, Fernández M, Valpuesta V et al (2015) Increased antioxidant capacity in tomato by ectopic expression of the strawberry D-galacturonate reductase gene. Biotechnol J 10:490–500

    Article  CAS  PubMed  Google Scholar 

  • Asensi-Fabado MA, Munné-Bosch S (2010) Vitamins in plants: occurrence, biosynthesis and antioxidant function. Trends Plant Sci 15:582–592

    Article  CAS  PubMed  Google Scholar 

  • Augustin J, Johnson SR, Teitzel C, Toma RB, Shaw RL, True RH et al (1978) Vitamin composition of freshly harvested and stored potatoes. J Food Sci 43:1566–1574

    Article  CAS  Google Scholar 

  • Austria R, Semenzato A, Bettero A (1997) Stability of vitamin C derivatives in solution and topical formulations. J Pharm Biomed Anal 15:795–801

    Google Scholar 

  • Badejo AA, Eltelib HA, Fujikawa Y, Esaka M (2009) Genetic manipulation for enhancing vitamin C content in tobacco expressing acerola (Malpighia glabra) GDP-l-galactose phosphorylase gene. Hortic Environ Biotechnol 50:329–333

    CAS  Google Scholar 

  • Badejo AA, Wada K, Gao Y, Maruta T, Sawa Y, Shigeoka S et al (2012) Translocation and the alternative D-galacturonate pathway contribute to increasing the ascorbate level in ripening tomato fruits together with the D-mannose/L-galactose pathway. J Exp Bot 63:229–239

    Article  CAS  PubMed  Google Scholar 

  • Bagri DS, Upadhyaya DC, Kumar A, Upadhyaya CP (2018) Overexpression of PDX-II gene in potato (Solanum tuberosum L.) leads to the enhanced accumulation of vitamin B6 in tuber tissues and tolerance to abiotic stresses. Plant Sci 272:267–275

    Article  CAS  PubMed  Google Scholar 

  • Bao G, Zhuo C, Qian C, Xiao T, Guo Z, Lu S (2016) Co-expression of NCED and ALO improves vitamin C level and tolerance to drought and chilling in transgenic tobacco and stylo plants. Plant Biotechnol J 14:206–214

    Article  CAS  PubMed  Google Scholar 

  • Bilski P, Li MY, Ehrenshaft M, Daub ME, Chignell CF (2000) Vitamin B6 (pyridoxine) and its derivatives are efficient singlet oxygen quenchers and potential fungal antioxidants. J Photochem Photobiol 71:129–134

    Google Scholar 

  • Brigelius-Flohé R (2009) Vitamin E: the shrew waiting to be tamed. Free Radic Biol Med 46:543–554

    Article  CAS  PubMed  Google Scholar 

  • Brummel DA, Harpster MH (2001) Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants. Plant Mol Biol 47:311–340

    Google Scholar 

  • Bulley S, Laing W (2016) The regulation of ascorbate biosynthesis. Curr Opin Plant Biol 33:15–22

    Article  CAS  PubMed  Google Scholar 

  • Bulley SM, Rassam M, Hoser D, Otto W, Schuenemann N, Wright M et al (2009) Gene expression studies in kiwifruit and gene overexpression in Arabidopsis indicates that GDP-L-galactose guanyltransferase is a major control point of vitamin C biosynthesis. J Exp Bot 60:765–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bulley S, Wright M, Rommens C, Yan H, Rassam M, Lin-Wang K et al (2012) Enhancing ascorbate in fruits and tubers through over-expression of the l-galactose pathway gene GDP-l-galactose phosphorylase. Plant Biotechnol J 10:390–397

    Article  CAS  PubMed  Google Scholar 

  • Cahoon EB, Hall SE, Ripp KG, Ganzke TS, Hitz WD, Coughlan SJ (2003) Metabolic redesign of vitamin E biosynthesis in plants for tocotrienol production and increased antioxidant content. Nat Biotechnol 21:1082–1087

    Article  CAS  PubMed  Google Scholar 

  • Cai X, Ye J, Hu T, Zhang Y, Ye Z, Li H (2014) Genome-wide classification and expression analysis of nucleobase-ascorbate transporter (NAT) gene family in tomato. Plant Growth Regul 73:19–30

    Article  CAS  Google Scholar 

  • Cai X, Zhang C, Ye J, Hu T, Ye Z, Li H, Zhang Y (2015) Ectopic expression of FaGalUR leads to ascorbate accumulation with enhanced oxidative stress, cold, and salt tolerance in tomato. Plant Growth Regul 76:187–197

    Article  CAS  Google Scholar 

  • Cai X, Zhang C, Shu W, Ye Z, Li H, Zhang Y (2016) The transcription factor SlDof22 involved in ascorbate accumulation and salinity stress in tomato. Biochem Biophys Res Commun 474:736–741

    Article  CAS  PubMed  Google Scholar 

  • Caretto S, Nisi R, Paradiso A, De Gara L (2010) Tocopherol production in plant cell cultures. Mol Nutr Food Res 54:726–730

    Article  CAS  PubMed  Google Scholar 

  • Carr AC, Frei B (1999) Toward a new recommended dietary allowance for vitamin C based on antioxidant and health effects in humans. Am J Clin Nutr 69:1086–1107

    Google Scholar 

  • Cellini B, Montioli R, Oppici E, Astegno A, Voltattorni CB (2014) The chaperone role of the pyridoxal 5′-phosphate and its implications for rare diseases involving B6-dependent enzymes. Clin Biochem 47:158–165

    Article  CAS  PubMed  Google Scholar 

  • Chander S, Guo YQ, Yang XH, Yan JB, Zhang YR, Song TM, Li JS (2008) Genetic dissection of tocopherol content and composition in maize grain using quantitative trait loci analysis and the candidate gene approach. Mol Breed 22:353–365

    Article  CAS  Google Scholar 

  • Che P, Zhao ZY, Glassman K, Dolde D, Hu TX, Jones TJ, Albertsen MC (2016) Elevated vitamin E content improves all-trans β-carotene accumulation and stability in biofortified sorghum. Proc Natl Acad Sci USA 113:11040–11045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Gallie DR (2005) Increasing tolerance to ozone by elevating foliar ascorbic acid confers greater protection against ozone than increasing avoidance. Plant Physiol 138:1673–1689

    Google Scholar 

  • Chen H, Xiong LM (2009) Enhancement of vitamin B6 levels in seeds through metabolic engineering. Plant Biotechnol J 7:673–681

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Young TE, Ling J, Chang SC, Gallie DR (2003) Increasing vitamin C content of plants through enhanced ascorbate recycling. Proc Natl Acad Sci USA 100:3525–3530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen S, Li H, Liu G (2006) Progress of vitamin E metabolic engineering in plants. Trans Res 15:655–665

    Google Scholar 

  • Chen Z, Qin C, Lin L, Zeng X, Zhao Y, He S, Lu S, Guo Z (2015) Overexpression of yeast arabinono-1,4-lactone oxidase gene (ALO) increases tolerance to oxidative stress and Al toxicity in transgenic tobacco plants. Plant Mol Biol Rep 33:806–818

    Article  CAS  Google Scholar 

  • Cho EA, Lee CA, Kim YS, Baek SH, Reyes BG, Yun SJ (2005) Expression of γ-tocopherol methyltransferase transgene improves tocopherol composition in lettuce (Latuca sativa L.). Mol Cells (Springer Science & Business Media BV) 19(1)

    Google Scholar 

  • Cho KM, Nguyen HTK, Kim SY, Shin JS, Cho DH, Hong SB et al (2016) CML10, a variant of calmodulin, modulates ascorbic acid synthesis. New Phytol 209:664–678

    Article  CAS  PubMed  Google Scholar 

  • Colinas M, Eisenhut M, Tohge T, Pesquera M, Fernie AR, Weber AP, Fitzpatrick TB (2016) Balancing of B6 vitamers is essential for plant development and metabolism in Arabidopsis. Plant Cell 28:439–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collakova E, DellaPenna D (2003) Homogentisate phytyltransferase activity is limiting for tocopherol biosynthesis in Arabidopsis. Plant Physiol 131:632–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conklin PL, Gatzek S, Wheeler GL, Dowdle J, Raymond MJ, Rolinski S et al (2006) Arabidopsis thaliana VTC4 encodes L-galactose-1-P phosphatase, a plant ascorbic acid biosynthetic enzyme. J Biol Chem 281:15662–15670

    Article  CAS  PubMed  Google Scholar 

  • Conklin PL, DePaolo D, Wintle B, Schatz C, Buckenmeyer G (2013) Identification of Arabidopsis VTC3 as a putative and unique dual function protein kinase:protein phosphatase involved in the regulation of the ascorbic acid pool in plants. J Exp Bot 64:2793–2804

    Article  CAS  PubMed  Google Scholar 

  • Cronje C, George GM, Fernie AR, Bekker J, Kossmann J, Bauer R (2012) Manipulation of L-ascorbic acid biosynthesis pathways in Solanum lycopersicum: elevated GDP-mannose pyrophosphorylase activity enhances L-ascorbate levels in red fruit. Planta 235:553–564

    Article  CAS  PubMed  Google Scholar 

  • Cruz-Rus E, Botella MA, Valpuesta V, Gomez-Jimenez MC (2010) Analysis of genes involved in L-ascorbic acid biosynthesis during growth and ripening of grape berries. J Plant Physiol 167:739–748

    Article  CAS  PubMed  Google Scholar 

  • DellaPenna D, Mene-Saffrane L (2011) Vitamin E. Adv Bot Res 59:179–227

    Google Scholar 

  • Di Salvo ML, Safo MK, Contestabile R (2012) Biomedical aspects of pyridoxal 5′-phosphate availability. Front Biosci 4:897–913

    Google Scholar 

  • Diepenbrock CH, Kandianis CB, Lipka AE, Magallanes-Lundback M, Vaillancourt B, Góngora-Castillo E, Ilut DC et al (2017) Novel loci underlie natural variation in vitamin E levels in maize grain. Plant Cell 29:2374–2392

    Google Scholar 

  • Dror DK, Allen LH (2011) Vitamin E deficiency in developing countries. Food Nutr Bull 32:124–143

    Article  PubMed  Google Scholar 

  • El Airaj H, Gest N, Truffault V, Garchery C, Riqueau G, et al (2013) Decreased monodehydroascorbate reductase activity reduces tolerance to cold storage in tomato and affects fruit antioxidant levels. Postharvest Biol Technol 86:502–510

    Google Scholar 

  • Eltayeb AE, Kawano N, Badawi GH, Kaminaka H, Sanekata T, Morishima I et al (2006) Enhanced tolerance to ozone and drought stresses in transgenic tobacco overexpressing dehydroascorbate reductase in cytosol. Physiol Plant 127:57–65

    Article  CAS  Google Scholar 

  • Endres S, Tenhaken R (2009) Myoinositol oxygenase controls the level of myoinositol in Arabidopsis, but does not increase ascorbic acid. Plant Physiol 149:1042–1049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans HM, Emeeson OH, Emerson GA (1936) The isolation from wheat germ oil of an alcohol, α-tocopherol, having the properties of vitamin E. J Biol Chem 113:319–332

    CAS  Google Scholar 

  • Farre G, Sudhakar D, Naqvi S, Sandmann G, Christou P, Capell T et al (2012) Transgenic rice grains expressing a heterologous rhohydroxyphenylpyruvate dioxygenase shift tocopherol synthesis from the gamma to the alpha isoform without increasing absolute tocopherol levels. Transgenic Res 21:1093–1097

    Article  CAS  PubMed  Google Scholar 

  • Fenech M, Amaya I, Valpuesta V, Botella MA (2019) Vitamin C content in fruits: biosynthesis and regulation. Front Plant Sci 9:2006

    Article  PubMed  PubMed Central  Google Scholar 

  • Fernie AR, Tóth SZ (2015) Identification of the elusive chloroplast ascorbate transporter extends the substrate specificity of the PHT family. Mol Plant 8:674–676

    Article  CAS  PubMed  Google Scholar 

  • Fitzpatrick TB, Amrhein N, Kappes B, Macheroux P, Tews I, Raschle T (2007) Two independent routes of de novo vitamin B6 biosynthesis: not that different after all. Biochem J 407:1–13

    Article  CAS  PubMed  Google Scholar 

  • Fitzpatrick TB, Basset GJ, Borel P, Carrari F, DellaPenna D, Fraser PD et al (2012) Vitamin deficiencies in humans: can plant science help? Plant Cell 24:395–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fotopoulos V, De Tullio MC, Barnes J, Kanellis AK (2008) Altered stomatal dynamics in ascorbate oxidase over-expressing tobacco plants suggest a role for dehydroascorbate signalling. J Exp Bot 59:729–737

    Article  CAS  PubMed  Google Scholar 

  • Franceschi VR, Tarlyn NM (2002) L-ascorbic acid is accumulated in source leaf phloem and transported to sink tissues in plants. Plant Physiol 130:649–656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fraser PD, Enfissi EM, Halket JM, Truesdale MR, Yu D, Gerrish C, Bramley PM (2007) Manipulation of phytoene levels in tomato fruit: effects on isoprenoids, plastids, and intermediary metabolism. Plant Cell 19:3194–3211

    Google Scholar 

  • Frei B, Birlouez-Aragon I, Lykkesfeldt J (2012) Authors’ perspective: what is the optimum intake of vitamin C in humans? Crit Rev Food Sci Nutr 52:815–829

    Article  CAS  PubMed  Google Scholar 

  • Fudge J, Mangel N, Gruissem W, Vanderschuren H, Fitzpatrick TB (2017) Rationalising vitamin B6 biofortification in crop plants. Curr Opin Biotechnol 44:130–137

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Casal MN, Peña-Rosas JP, Giyose B (2017) Staple crops biofortified with increased vitamins and minerals: considerations for a public health strategy. Ann NY Acad Sci 1390:3–13

    Google Scholar 

  • George GM, Ruckle ME, Abt MR, Bull SE (2017) Ascorbic Acid Biofortification in Crops. In: Hossain M, Munné-Bosch S, Burritt D, Diaz-Vivancos P, Fujita M, Lorence A (eds) Ascorbic acid in plant growth, development and stress tolerance. Springer, Cham

    Google Scholar 

  • Gest N, Gautier H, Stevens R (2013) Ascorbate as seen through plant evolution: the rise of a successful molecule? J Exp Bot 64:33–53

    Article  CAS  PubMed  Google Scholar 

  • Ghavanini AA, Kimpinski K (2014) Revisiting the evidence for neuropathy caused by pyridoxine deficiency and excess. J Clin Neuromuscul Dis 16:25–31

    Article  PubMed  Google Scholar 

  • Ghimire BK, Seong ES, Lee CO, Lim JD, Lee JG, Yoo JH et al (2011) Enhancement of alpha-tocopherol content in transgenic Perilla frutescens containing the gamma-TMT gene. Afr J Biotechnol 10:2430–2439

    CAS  Google Scholar 

  • Gilliland LU, Magallanes-Lundback M, Hemming C, Supplee A, Koornneef M, Bentsink L, DellaPenna D (2006) Genetic basis for natural variation in seed vitamin E levels in Arabidopsis thaliana. Proc Natl Acad Sci USA 103:18834–18841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goo YM, Chun HJ, Kim TW, Lee CH, Ahn MJ, Bae SC, Lee SW et al (2008) Expressional characterization of dehydroascorbate reductase cDNA in transgenic potato plants. J Plant Biol 51:35–41

    Google Scholar 

  • Gregory JF III (2012) Accounting for differences in the bioactivity and bioavailability of vitamers. Food Nutr Res 56:5809

    Article  CAS  Google Scholar 

  • Grusak MA, DellaPenna D (1999) Improving the nutrient composition of plants to enhance human nutrition and health. Annu Rev Plant Biol 50:133–161

    Google Scholar 

  • Gutierrez-Gonzalez JJ, Garvin DF (2016) Subgenome-specific assembly of vitamin E biosynthesis genes and expression patterns during seed development provide insight into the evolution of oat genome. Plant Biotechnol J 14:2147–2157

    Google Scholar 

  • Haroldsen VM, Chi-Ham CL, Kulkarni S, Lorence A, Bennett AB (2011) Constitutively expressed DHAR and MDHAR influence fruit, but not foliar ascorbate levels in tomato. Plant Physiol Biochem 49:1244–1249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hass CG, Tang S, Leonard S, Traber MG, Miller JF, Knapp SJ (2006) Three non-allelic epistatically interacting methyltransferase mutations produce novel tocopherol (vitamin E) profiles in sunflower. Theor Appl Genet 113:767–778

    Article  CAS  PubMed  Google Scholar 

  • Hellmann H, Mooney S (2010) Vitamin B6: a molecule for human health? Molecules 15:442–459

    Google Scholar 

  • Hemavathi U, Upadhyaya CP, Young KE, Akula N, Kim HS, Heung JJ, et al (2009) Over-expression of strawberry d-galacturonic acid reductase in potato leads to accumulation of vitamin C with enhanced abiotic stress tolerance. Plant Sci 177:659–667

    Google Scholar 

  • Herrero S, Daub ME (2007) Genetic manipulation of vitamin B6 biosynthesis in tobacco and fungi uncovers limitations to up-regulation of the pathway. Plant Sci 172:609–620

    Article  CAS  Google Scholar 

  • Herrero S, González E, Gillikin JW, Vélëz H, Daub ME (2011) Identification and characterization of a pyridoxal reductase involved in the vitamin B6 salvage pathway in Arabidopsis. Plant Mol Biol 76:157–169

    Article  CAS  PubMed  Google Scholar 

  • Hey D, Rothbart M, Herbst J, Wang P, Müller J, Wittmann D, Gruhl K et al (2017) LIL3, a light-harvesting in Arabidopsis thaliana. Plant Physiol 174:1037–1050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hofius D, Hajirezaei MR, Geiger M, Tschiersch H, Melzer M, Sonnewald U (2004) RNAi-mediated tocopherol deficiency impairs photoassimilate export in transgenic potato plants. Plant Physiol 135:1256–1268

    Google Scholar 

  • Hu TX, Ye J, Tao PW, Li HX, Zhang JH, Zhang YY, Ye ZB (2016) The tomato HD-Zip I transcription factor SIHZ24 modulates ascorbate accumulation through positive regulation of the D-mannose/L-galactose pathway. Plant J 85:16–29

    Article  CAS  PubMed  Google Scholar 

  • Imai T, Ban Y, Yamamoto T, Moriguchi T (2012) Ectopic overexpression of peach GDP-d-mannose pyrophosphorylase and GDP-d-mannose-3′, 5′-epimerase in transgenic tobacco. Plant Cell Tissue Organ Cult 111:1–13

    Google Scholar 

  • Ioannidi E, Kalamaki MS, Engineer C, Pateraki I, Alexandrou D, Mellidou I et al (2009) Expression profiling of ascorbic acid-related genes during tomato fruit development and ripening and in response to stress conditions. J Exp Bot 60:663–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jain AK, Nessler CL (2000) Metabolic engineering of an alternative pathway for ascorbic acid biosynthesis in plants. Mol Breed 6:73–78

    Article  CAS  Google Scholar 

  • Jiang Q (2014) Natural forms of vitamin E: metabolism, antioxidant, and anti-inflammatory activities and their role in disease prevention and therapy. Free Radic Biol Med 72:76–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Justiniano R, Williams JD, Perer J, Hua A, Lesson J, Park SL et al (2017) The B6-vitamer pyridoxal is a sensitizer of UVA-induced genotoxic stress in human primary keratinocytes and reconstructed epidermis. Photochem Photobiol 93:990–998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamal-Eldin A, Appelqvist LÅ (1996) The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids 31:671–701

    Google Scholar 

  • Kannappan R, Gupta SC, Kim JH, Aggarwal BB (2012) Tocotrienols fight cancer by targeting multiple cell signaling pathways. Genes Nutr 7:43

    Google Scholar 

  • Karunanandaa B, Qi Q, Hao M, Baszis SR, Jensen PK, Wong YH, Post-Beittenmiller D et al (2005) Metabolically engineered oilseed crops with enhanced seed tocopherol. Metab Eng 7:384–400

    Article  CAS  PubMed  Google Scholar 

  • Kim YS, Kim IS, Bae MJ, Choe YH, Kim YH, Park HM et al (2013) Homologous expression of cytosolic dehydroascorbate reductase increases grain yield and biomass under paddy field conditions in transgenic rice (Oryza sativa L. japonica). Planta 237:1613–1625

    Article  CAS  PubMed  Google Scholar 

  • Kulkarni S (2012) Elevating ascorbate content in tomato and studying the role of jasmonates in modulating ascorbate in Arabidopsis. MS thesis, Arkansas State University, Jonesboro, AR

    Google Scholar 

  • Laing WA, Wright MA, Cooney J, Bulley SM (2007) The missing step of the L-galactose pathway of ascorbate biosynthesis in plants, an L-galactose guanyltransferase, increases leaf ascorbate content. Proc Nat Acad Sci 104:9534–9539

    Google Scholar 

  • Laing WA, Martinez-Sanchez M, Wright MA, Bulley SM, Brewster D, Dare AP et al (2015) An upstream open reading frame is essential for feedback regulation of ascorbate biosynthesis in Arabidopsis. Plant Cell 27:772–786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landi M, Fambrini M, Basile A, Salvini M, Guidi L, Pugliesi C (2015) Overexpression of L-galactono-1, 4-lactone dehydrogenase (L-GalLDH) gene correlates with increased ascorbate concentration and reduced browning in leaves of Lactuca sativa L. after cutting. Plant Cell Tissue Organ Cult 123:109–120

    Google Scholar 

  • Li Y, Liu Y, Zhang J (2010a) Advances in the research on the AsA-GSH cycle in horticultural crops. Front Agric China 4:84–90

    Google Scholar 

  • Li F, Wu QY, Sun YL, Wang LY, Yang XH, Meng QW (2010b) Overexpression of chloroplastic monodehydroascorbate reductase enhanced tolerance to temperature and methyl viologen-mediated oxidative stresses. Physiol Plant 139:421–434

    CAS  PubMed  Google Scholar 

  • Li Q, Li C, Yu X (2012a) Enhanced ascorbic acid accumulation through overexpression of dehydroascorbate reductase confers tolerance to methyl viologen & salt stresses in tomato. Czech J Genet Plant Breed 48:74–86

    Article  Google Scholar 

  • Li Q, Yang X, Xu S, Cai Y, Zhang D, Han Y, Yan J (2012b) Genome-wide association studies identified three independent polymorphisms associated with α-tocopherol content in maize kernels. PLoS ONE 7:e36807

    Google Scholar 

  • Li KT, Moulin M, Mangel N, Albersen M, Verhoeven-Duif NM, Ma QX et al (2015) Increased bioavailable vitamin B6 in field-grown transgenic cassava for dietary sufficiency. Nat Biotechnol 33:1029–1032

    PubMed  Google Scholar 

  • Li S, Wang J, Yu Y, Wang F, Dong J, Huang R (2016) D27E mutation of VTC1 impairs the interaction with CSN5B and enhances ascorbic acid biosynthesis and seedling growth in Arabidopsis. Plant Mol Biol 92:473–482

    Google Scholar 

  • Li L, Lu M, An H (2017) Expression profiles of the genes involved in L-ascorbic acid biosynthesis and recycling in Rosa roxburghii leaves of various ages. Acta Physiol Plant 39:44–53

    Article  CAS  Google Scholar 

  • Li Y, Chu Z, Luo J, Zhou Y, Cai Y, Lu Y, Xia J, Kuang H, Ye Z, Ouyang B (2018a) The C2H2 zinc-finger protein SlZF3 regulates AsA synthesis and salt tolerance by interacting with CSN5B. Plant Biotechnol J 16:1201–1213

    Article  CAS  PubMed  Google Scholar 

  • Li T, Yang X, Yu Y, Si X, Zhai X, Zhang H et al (2018b) Domestication of wild tomato is accelerated by genome editing. Nat Biotechnol. https://doi.org/10.1038/nbt.4273

  • Liao P, Chen X, Wang M, Bach TJ, Chye ML (2018) Improved fruit α-tocopherol, carotenoid, squalene and phytosterol contents through manipulation of Brassica juncea 3-HYDROXY-3-METHYLGLUTARYL-COA SYNTHASE 1 in transgenic tomato. Plant Biotechnol J 16:784–796

    Google Scholar 

  • Lim MY, Pulla RK, Park JM, Harn CH, Jeong BR (2012) Overexpression of l-gulono-γ-lactone oxidase (GLOase) gene leads to ascorbate accumulation with enhanced abiotic stress tolerance in tomato. Cell Dev Biol Plant 48:453–461

    Article  CAS  Google Scholar 

  • Lim MY, Jeong BR, Jung M, Harn CH (2016) Transgenic tomato plants expressing strawberry d-galacturonic acid reductase gene display enhanced tolerance to abiotic stresses. Plant Biotechnol Rep 10:105–116

    Article  Google Scholar 

  • Lin YP, Wu MC, Chang YY (2016) Identification of a chlorophyll dephytylase involved in chlorophyll turnover in Arabidopsis. Plant Cell 28:2974–2990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lionetti V, Raiola A, Mattei B, Bellincampi D (2015) The grapevine VvPMEI1 gene encodes a novel functional pectin methylesterase inhibitor associated to grape berry development. PLoS ONE 10:e0133810. https://doi.org/10.1371/journal.pone.0133810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lipka AE, Gore MA, Magallanes-Lundback M, Mesberg A, Lin H, Tiede T, DellaPenna D et al (2013) Genome-wide association study and pathway level analysis of tocochromanol levels in maize grain. G3 Genes Genomes Genet 3:1287–1299

    Google Scholar 

  • Lira BS, Rosado D, Almeida J, de Souza AP, Buckeridge MS, Purgatto E, Rossi M et al (2016) Pheophytinase knockdown impacts carbon metabolism and nutraceutical content under normal growth conditions in tomato. Plant Cell Physiol 57:642–653

    Google Scholar 

  • Lisko KA, Torres R, Harris RS, Belisle M, Vaughan MM, Jullian B et al (2013) Elevating vitamin C content via overexpression of myo-inositol oxygenase and L-gulono-1, 4-lactone oxidase in Arabidopsis leads to enhanced biomass and tolerance to abiotic stresses. In Vitro Cell Dev Biol-Plant 49:643–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu W, An H-M, Yang M (2013) Overexpression of Rosa roxburghii L-galactono-1,4-lactone dehydrogenase in tobacco plant enhances ascorbate accumulation and abiotic stress tolerance. Acta Physiol Plant 35:1617–1624

    Article  CAS  Google Scholar 

  • Liu F, Wang L, Gu L, Zhao W, Su H, Cheng X (2015) Higher transcription levels in ascorbic acid biosynthetic and recycling genes were associated with higher ascorbic acid accumulation in blueberry. Food Chem 188:399–405

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Yang T, Lin Z, Guo B, Xing C, Zhao L, Huang X (2019) A WRKY transcription factor Pbr WRKY 53 from Pyrus betulaefolia is involved in drought tolerance and AsA accumulation. Plant Biotechnol J 17:1770–1787. https://doi.org/10.1111/pbi.13099

  • Locato V, Cimini S, De Gara L (2014) Strategies to increase vitamin C in plants: from plant defense perspective to food biofortification. Front Plant Sci 4:1–12

    Google Scholar 

  • Loewus FA (1999) Biosynthesis and metabolism of ascorbic acid in plants and of analogs of ascorbic acid in fungi. Phytochemistry 52:193–210

    Article  CAS  Google Scholar 

  • Lorence A, Chevone BI, Mendes P, Nessler CL (2004) myo-inositol oxygenase offers a possible entry point into plant ascorbate biosynthesis. Plant Physiol 134:1200–1205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu Y, Rijzaani H, Karcher D, Ruf S, Bock R (2013) Efficient metabolic pathway engineering in transgenic tobacco and tomato plastids with synthetic multigene operons. Proc Natl Acad Sci USA 110:E623–E632

    Google Scholar 

  • Ma L, Wang Y, Liu W, Liu Z (2014) Overexpression of an alfalfa GDP-mannose 3,5-epimerase gene enhances acid, drought and salt tolerance in transgenic Arabidopsis by increasing ascorbate accumulation. Biotechnol Lett 36:2331–2341

    Google Scholar 

  • Macknight RC, Laing WA, Bulley SM, Broad RC, Johnson AA, Hellens RP (2017) Increasing ascorbate levels in crops to enhance human nutrition and plant abiotic stress tolerance. Curr Opin Biotechnol 44:153–160

    Google Scholar 

  • Mangel N, Fudge JB, Li KT, Wu TY, Tohge T et al (2019) Enhancement of vitamin B6 levels in rice expressing Arabidopsis vitamin B6 biosynthesis de novo genes. Plant J. https://doi.org/10.1111/tpj.14379

  • Maruta T, Yonemitsu M, Yabuta Y, Tamoi M, Ishikawa T, Shigeoka S (2008) Arabidopsis phosphomannose isomerase 1, but not phosphomannose isomerase 2, is essential for ascorbic acid biosynthesis. J Biol Chem 283:28842–28851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathur P, Ding Z, Saldeen T, Mehta JL (2015) Tocopherols in the prevention and treatment of atherosclerosis and related cardiovascular disease. Clin Cardiol 38:570–576

    Google Scholar 

  • Maurino VG, Grube E, Zielinski J, Schild A, Fischer K, Flügge UI (2006) Identification and expression analysis of twelve members of the nucleobase–ascorbate transporter (NAT) gene family in Arabidopsis thaliana. Plant Cell Physiol 47:1381–1393

    Google Scholar 

  • Mehansho H, Hamm MW, Henderson LM (1979) Transport and metabolism of pyridoxal and pyridoxal phosphate in the small intestine of the rat. J Nutr 109:1542–1551

    Article  CAS  PubMed  Google Scholar 

  • Mellidou I, Kanellis AK (2017) Genetic control of ascorbic acid biosynthesis and recycling in horticultural crops. Front Chem 5:50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mellidou I, Chagné D, Laing WA, Keulemans J, Davey MW (2012) Allelic variation in paralogs of GDP-L-galactose phosphorylase is a major determinant of vitamin C concentrations in apple fruit. Plant Physiol 160:1613–1629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mène-Saffrané L (2018) Vitamin E biosynthesis and its regulation in plants. Antioxidants 7:2. Basel, Switzerland

    Google Scholar 

  • Mene-Saffrane L, Pellaud S (2017) Current strategies for vitamin E biofortification of crops. Curr Opin Biotechnol 44:189–197

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  CAS  PubMed  Google Scholar 

  • Miyaji T, Kuromori T, Takeuchi Y, Yamaji N, Yokosho K, Shimazawa A, Sugimoto E, Omote H, Ma JF, Shinozaki K, Moriyama Y (2015) AtPHT4;4 is a chloroplast-localized ascorbate transporter in Arabidopsis. Nat Commun 6:5928

    Article  CAS  PubMed  Google Scholar 

  • Mooney S, Chen LY, Kuhn C, Navarre R, Knowles NR, Hellmann H (2013) Genotype-specific changes in vitamin B6 content and the PDX family in potato. Biomed Res Int 2013:389723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moser MA, Chun OK (2016) Vitamin C and heart health: a review based on findings from epidemiologic studies. Int J Mol Sci 17:1328

    Article  CAS  PubMed Central  Google Scholar 

  • Mounet-Gilbert L, Dumont M, Ferrand C, Bournonville C, Monier A, Jorly J et al (2016) Two tomato GDP-D-mannose epimerase isoforms involved in ascorbate biosynthesis play specific roles in cell wall biosynthesis and development. J Exp Bot 67:4767–4777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munne-Bosch S, Falk J (2004) New insights into the function of tocopherols in plants. Planta 218:323–326

    Article  CAS  PubMed  Google Scholar 

  • Myles S, Peiffer J, Brown PJ, Ersoz ES, Zhang Z, Costich DE, Buckler ES (2009) Association mapping: critical considerations shift from genotyping to experimental design. Plant Cell 21:2194–2202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naqvi S, Zhu C, Farre G, Ramessar K, Bassie L, Breitenbach J et al (2009) Transgenic multivitamin corn through biofortification of endosperm with three vitamins representing three distinct metabolic pathways. Proc Natl Acad Sci USA 106:7762–7767

    Article  PubMed  PubMed Central  Google Scholar 

  • Nunes-Nesi A, Carrari F, Lytovchenko A, Smith AM, Loureiro ME, Ratcliffe AG, Sweetlove LJ, Fernie AR (2005) Enhanced photosynthetic performance and growth as a consequence of decreasing mitochondrial malate dehydrogenase activity in transgenic tomato plants. Plant Physiol 137:611–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Obol JH, Arony DA, Wanyama R, Moi KL, Bodo B, Odong PO, Odida M (2016) Reduced plasma concentrations of vitamin B6 and increased plasma concentrations of the neurotoxin 3-hydroxykynurenine are associated with nodding syndrome: a case control study in Gulu and Amuru districts, Northern Uganda. Pan Afr Med J 24:123

    Article  PubMed  PubMed Central  Google Scholar 

  • Orvar BL, Ellis BE (1997) Transgenic tobacco plants expressing antisense RNA for cytosolic ascorbate peroxidases how increased susceptibility to ozone injury. Plant J 11:1297–1305

    Article  CAS  Google Scholar 

  • Ouyang S, Zhu W, Hamilton J, Lin H, Campbell M, Childs K et al (2007) The TIGR rice genome annotation resource: improvements and new features. Nucleic Acids Res 35:883–887

    Article  Google Scholar 

  • Pappenberger G, Hohmann HP (2014) Industrial production of L-ascorbic acid (vitamin C) and D-isoascorbic acid. Adv Biochem Eng Biotechnol 143:143–188

    CAS  PubMed  Google Scholar 

  • Parra M, Stahl S, Hellmann H (2018) Vitamin B6 and its role in cell metabolism and physiology. Cells 7:84

    Google Scholar 

  • Pellaud S, Bory A, Chabert V, Romanens J, Chaisse-Leal L, Doan AV, Mène-Saffrané L (2018) WRINKLED 1 and ACYL-COA: DIACYLGLYCEROL ACYLTRANSFERASE 1 regulate tocochromanol metabolism in Arabidopsis. New Phytol 217:245–260

    Google Scholar 

  • Pignocchi C, Fletcher JM, Wilkinson JE, Barnes JD, Foyer CH (2003) The function of ascorbate oxidase in tobacco. Plant Physiol 132:1631–1641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prochnik S, Marri PR, Desany B, Rabinowicz PD, Kodira C, Mohiuddin M et al (2012) The cassava genome: current progress, future directions. Trop Plant Biol 5:88–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qian W, Yu C, Qin H, Liu X, Zhang A, Johansen IE et al (2007) Molecular and functional analysis of phosphomannomutase (PMM) from higher plants and genetic evidence for the involvement of PMM in ascorbic acid biosynthesis in Arabidopsis and Nicotiana benthamiana. Plant J 49:399–413

    Article  CAS  PubMed  Google Scholar 

  • Qin A, Shi Q, Yu X (2011) Ascorbic acid contents in transgenic potato plants overexpressing two dehydroascorbate reductase genes. Mol Biol Rep 38:1557–1566

    Article  CAS  PubMed  Google Scholar 

  • Qin A, Huang X, Zhang H, Wu J, Yang J, Zhang S (2015) Overexpression of PbDHAR2 from Pyrus sinkiangensis in transgenic tomato confers enhanced tolerance to salt and chilling stresses. HortScience 50:789–796

    Google Scholar 

  • Quadrana L, Almeida J, Otaiza SN, Duffy T, Da Silva JVC, de Godoy F, Rossi M (2013) Transcriptional regulation of tocopherol biosynthesis in tomato. Plant Mol Biol 81:309–325

    Google Scholar 

  • Quadrana L, Almeida J, Asís R, Duffy T, Dominguez PG, Bermúdez L, Asurmendi S (2014) Natural occurring epialleles determine vitamin E accumulation in tomato fruits. Nat Commun 5:4027

    Article  CAS  Google Scholar 

  • Radzio JA, Lorence A, Chevone BI, Nessler CL (2003) L-Gulono 1,4-lactone oxidase expression rescues vitamin C-deficient Arabidopsis (vtc) mutants. Plant Mol Biol 53:837–844

    Article  CAS  PubMed  Google Scholar 

  • Raschke M, Boycheva S, Crèvecoeur M, Nunes-Nesi A, Witt S, Fernie AR et al (2011) Enhanced levels of vitamin B6 increase aerial organ size and positively affect stress tolerance in Arabidopsis. Plant J 66:414–432

    Article  CAS  PubMed  Google Scholar 

  • Rigano MM, Lionetti V, Raiola A, Bellincampi D, Barone A et al (2018) Pectic enzymes as potential enhancers of ascorbic acid production through the D-galacturonate pathway in Solanaceae. Plant Sci 266:55–63

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Ruiz M, Mateos RM, Codesido V, Corpas FJ, Palma JM (2017) Characterization of the galactono-1,4-lactone dehydrogenase from pepper fruits and its modulation in the ascorbate biosynthesis. Role of nitric oxide. Redox Biol 12:171–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Römer S, Fraser PD, Kiano JW, Shipton CA, Misawa N, Schuch W, Bramley PM (2000) Elevation of the provitamin A content of transgenic tomato plants. Nat Biotechnol 18:666

    Google Scholar 

  • Roth-Maier DA, Kettler SI, Kirchgessner M (2002) Availability of vitamin B(6) from different food sources. Int J Food Sci Nutr 53:171–179

    Article  CAS  PubMed  Google Scholar 

  • Ruggieri V, Sacco A, Calafiore R, Frusciante L, Barone A (2015) Dissecting a QTL into candidate genes highlighted the key role of pectinesterases in regulating the ascorbic acid content in tomato fruit. Plant Genome 8:1–10

    Google Scholar 

  • Sadre R, Gruber J, Frentzen M (2006) Characterization of homogentisate prenyltransferases involved in plastoquinone-9 and tocochromanol biosynthesis. FEBS Lett 580:5357–5362

    Article  CAS  PubMed  Google Scholar 

  • Sang Y, Barbosa JM, Wu H, Locy RD, Singh NK (2007) Identification of a pyridoxine (pyridoxamine) 5′-phosphate oxidase from Arabidopsis thaliana. FEBS Lett 581:344–348

    Article  CAS  PubMed  Google Scholar 

  • Sanmartin M, Drogoudi P, Lyons T, Pateraki I, Barnes J, Kanellis AK (2003) Over-expression of ascorbate oxidase in the apoplast of transgenic tobacco results in altered ascorbate and glutathione redox states and increased sensitivity to ozone. Planta 216:918–928

    CAS  PubMed  Google Scholar 

  • Sattler SE, Cheng Z, DellaPenna D (2004a) From Arabidopsis to agriculture: engineering improved Vitamin E content in soybean. Trends Plant Sci 9:365–367

    Article  CAS  PubMed  Google Scholar 

  • Sattler SE, Gilliland LU, Magallanes-Lundback M, Pollard M, DellaPenna D (2004b) Vitamin E is essential for seed longevity and for preventing lipid peroxidation during germination. Plant Cell 16:1419–1432

    Google Scholar 

  • Sauvage C, Segura V, Bauchet G, Stevens R, Do PT, Nikoloski Z et al (2014) Genome-wide association in tomato reveals 44 candidate loci for fruit metabolic traits. Plant Physiol 165:1120–1132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sawake S, Tajima N, Mortimer JC, Lao J, Ishikawa T, Yu X, Yamanashi Y et al (2015) KONJAC1 and 2 are key factors for GDP-mannose generation and affect l-ascorbic acid and glucomannan biosynthesis in Arabidopsis. Plant Cell 27:3397–3409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schauer N, Semel Y, Roessner U, Gur A, Balbo I, Carrari F, Willmitzer L (2006) Comprehensive metabolic profiling and phenotyping of interspecific introgression lines for tomato improvement. Nat Biotechnol 24:447–454

    Article  CAS  PubMed  Google Scholar 

  • Schwechheimer SK, Park EY, Revuelta JL, Becker J, Wittmann C (2016) Biotechnology of riboflavin. Appl Micro Biotechnol 100:2107–2119

    Google Scholar 

  • Seo YS, Kim SJ, Harn CH, Kim WT (2011) Ectopic expression of apple fruit homogentisate phytyltransferase gene (MdHPT1) increases tocopherol in transgenic tomato (Solanum lycopersicum cv. Micro-Tom) leaves and fruits. Phytochemistry 72:321–329

    Article  CAS  PubMed  Google Scholar 

  • Shammugasamy B, Ramakrishnan Y, Ghazali HM, Muhammad K (2015) Tocopherol and tocotrienol contents of different varieties of rice in Malaysia. Sci Food Agric 95:672–678

    Article  CAS  Google Scholar 

  • Shintani D, DellaPenna D (1998) Elevating the vitamin E content of plants through metabolic engineering. Science 282:2098–2100

    Google Scholar 

  • Shukla V, Mattoo AK (2009) Potential for engineering horticultural crops with high antioxidant capacity. CAB Rev Perspect Agric Vet Sci 2009:1–22

    Google Scholar 

  • Skodda S, Muller T (2013) Refractory epileptic seizures due to vitamin B6 deficiency in a patient with Parkinson’s disease under duodopa® therapy. J Neural Transm 120:315–318

    Article  PubMed  Google Scholar 

  • Smirnoff N (2018) Ascorbic acid metabolism and functions: a comparison of plants and mammals. Free Radical Biol Med 122:116–129

    Google Scholar 

  • Smirnoff N, Wheeler GL (2000) Ascorbic acid in plants: biosynthesis and function. Crit Rev Biochem Mol Biol 35:291–314

    Article  CAS  PubMed  Google Scholar 

  • Stacey MG, Cahoon RE, Nguyen HT, Cui Y, Sato S, Nguyen CT, Batek J et al (2016) Identification of homogentisate dioxygenase as a target for vitamin E biofortification in oilseeds. Plant Physiol 172:1506–1518

    Google Scholar 

  • Strobbe S, Van Der Straeten D (2018) Toward eradication of B-vitamin deficiencies: considerations for crop biofortification. Front Plant Sci 9:443

    Article  PubMed  PubMed Central  Google Scholar 

  • Strobbe S, De Lepeleire J, Van Der Straeten D (2018) From in planta function to vitamin rich food crops: the ACE of biofortification. Front Plant Sci 9

    Google Scholar 

  • Tambasco-Studart M, Titiz O, Raschle T, Forster G, Amrhein N, Fitzpatrick TB (2005) Vitamin B6 biosynthesis in higher plants. Proc Natl Acad Sci USA 102:13687–13692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka T, Tateno Y, Gojobori T (2005) Evolution of vitamin B6 (pyridoxine) metabolism by gain and loss of genes. Mol Biol Evol 22:243–250

    Article  CAS  PubMed  Google Scholar 

  • Tang Y, Fu X, Shen Q, Tang K (2016) Roles of MPBQ-MT in promoting alpha/gamma-tocopherol production and photosynthesis under high light in lettuce. PLoS ONE 11:e0148490. https://doi.org/10.1371/journal.pone.0148490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tóth SZ, Nagy V, Puthur JT, Kovács L, Garab G (2011) The physiological role of ascorbate as photosystem II electron donor: protection against photoinactivation in heat-stressed leaves. Plant Physiol 156:382–392

    Google Scholar 

  • Troesch B, Hoeft B, McBurney M, Eggersdorfer M, Weber P (2012) Dietary surveys indicate vitamin intakes below recommendations are common in representative Western countries. British J Nutr 108:692–698

    Google Scholar 

  • Truffault V, Fry SC, Stevens RG, Gautier H (2017) Ascorbate degradation in tomato leads to accumulation of oxalate, threonate and oxalyl threonate. Plant J 89:996–1008

    Article  CAS  PubMed  Google Scholar 

  • Ueland PM, McCann A, Midttun Ø, Ulvik A (2017) Inflammation, vitamin B6 and related pathways. Mol Aspects Med 53:10–27

    Article  CAS  PubMed  Google Scholar 

  • Ulatowski LM, Manor D (2015) Vitamin E and neurodegeneration. Neurobiol Dis 84:78–83

    Article  CAS  PubMed  Google Scholar 

  • Upadhyaya CP, Young KE, Akula N, Soon Kim H, Heung JJ, Oh OM, Aswath CR, Chun SC, Kim DH et al (2009) Over-expression of strawberry D-galacturonic acid reductase in potato leads to accumulation of vitamin C with enhanced abiotic stress tolerance. Plant Sci 177:659–667

    Article  CAS  Google Scholar 

  • Ushimaru T, Nakagawa T, Fujioka Y, Daicho K, Naito M, Yamauchi Y, Nonaka H, Amako K, Yamawaki K, Murata N (2006) Transgenic Arabidopsis plants expressing the rice dehydroascorbate reductase gene are resistant to salt stress. J Plant Physiol 163:1179–1184

    Article  CAS  PubMed  Google Scholar 

  • Velandia B, Centor RM, McConnell V, Shah M (2008) Scurvy is still present in developed countries. J Gen Intern Med 23:1281–1284

    Google Scholar 

  • Valpuesta V, Botella MA (2004) Biosynthesis of L-ascorbic acid in plants: new pathways for an old antioxidant. Trends Plant Sci 9:573–577

    Article  CAS  PubMed  Google Scholar 

  • Van Eenennaam AL, Lincoln K, Durrett TP, Valentin HE, Shewmaker CK, Thorne GM, Hao M et al (2003) Engineering vitamin E content: from Arabidopsis mutant to soy oil. Plant Cell 15:3007–3019

    Google Scholar 

  • Vandamme EJ, Revuelta JL (2016) Industrial Biotechnology of vitamins, biopigments and antioxidants.Wiley‐VCH, Weinheim, Germany, p 560

    Google Scholar 

  • Vanderschuren H, Boycheva S, Li KT, Szydlowski N, Gruissem W, Fitzpatrick TB (2013) Strategies for vitamin B6 biofortification of plants: a dual role as a micronutrient and a stress protectant. Front Plant Sci 4:143

    Article  PubMed  PubMed Central  Google Scholar 

  • Villanueva C, Kross RD (2012) Antioxidant-induced stress. Int J Mol Sci 13:2091–2109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vissers MC, Bozonet SM, Pearson JF, Braithwaite LJ (2011) Dietary ascorbate intake affects steady state tissue concentrations in vitamin C-deficient mice: tissue deficiency after sub-optimal intake and superior bioavailability from a food source (kiwifruit). Am J Clin Nutr 93:292–301

    Article  CAS  PubMed  Google Scholar 

  • Vogel G (2012) Tropical diseases: mystery disease haunts region. Science 336:144–146

    Article  CAS  PubMed  Google Scholar 

  • Wadman M (2011) African outbreak stumps experts. Nature 475:148–149

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Xiao Y, Chen W, Tang K, Zhang L (2010) Increased vitamin C content accompanied by an enhanced recycling pathway confers oxidative stress tolerance in Arabidopsis. J Integr Plant Biol 52:400–409

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Yu Y, Zhang Z, Quan R, Zhang H, Ma L, Deng XW et al (2013) Arabidopsis CSN5B interacts with VTC1 and modulates ascorbic acid synthesis. Plant Cell 25:625–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Xu S, Fan Y, Liu N, Zhan W, Liu H, Deng M (2018) Beyond pathways: genetic dissection of tocopherol content in maize kernels by combining linkage and association analyses. Plant Biotechnol J 16:1464–1475

    Google Scholar 

  • Wevar-Oller AL, Agostini E, Milrad SR, Medina MI (2009) In situ and de novo biosynthesis of vitamin C in wild type and transgenic tomato hairy roots: a precursor feeding study. Plant Sci 177:28–34

    Article  CAS  Google Scholar 

  • Wheeler GL, Jones MA, Smirnoff N (1998) The biosynthetic pathway of vitamin C in higher plants. Nature 393:365–369

    Article  CAS  PubMed  Google Scholar 

  • Wheeler GL, Ishikawa T, Pornsaksit V, Smirnoff N (2015) Evolution of alternative biosynthetic pathways for vitamin C following plastid acquisition in photosynthetic eukaryotes. eLife 4:e06369. https://doi.org/10.7554/elife.06369

  • Wolucka BA, Van Montagu M (2003) GDP-mannose 3′,5′-epimerase forms GDP-L-gulose, a putative intermediate for the de novo biosynthesis of vitamin C in plants. J Biol Chem 278:47483–47490

    Article  CAS  PubMed  Google Scholar 

  • Xu Q, Chen LL, Ruan X, Chen D, Zhu A, Chen C et al (2012) The draft genome of sweet orange (Citrus sinensis). Nat Genet 45:59–66

    Article  CAS  PubMed  Google Scholar 

  • Yabuta Y, Tanaka H, Yoshimura S, Suzuki A, Tamoi M, Maruta T et al (2013) Improvement of vitamin E quality and quantity in tobacco and lettuce by chloroplast genetic engineering. Transgenic Res 22:391–402

    Google Scholar 

  • Yamamoto A, Bhuiyan MNH, Waditee R, Tanaka Y, Esaka M, Oba K, Jagendorf AT, Takabe T (2005) Suppressed expression of the apoplastic ascorbate oxidase gene increases salt tolerance in tobacco and Arabidopsis plants. J Exp Bot 56:1785–1796

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Cahoon RE, Hunter SC, Zhang C, Han J, Borgschulte T, Cahoon EB (2011a) Vitamin E biosynthesis: functional characterization of the monocot homogentisate geranylgeranyl transferase. Plant J 65:206–217

    Google Scholar 

  • Yang W, Cahoon RE, Hunter SC, Zhang C, Han J, Borgschulte T, Cahoon EB (2011b) Vitamin E biosynthesis: functional characterization of the monocot homogentisate geranylgeranyl transferase. Plant J 65:206–217

    Article  CAS  PubMed  Google Scholar 

  • Yin L, Wang S, Eltayeb AE, Uddin MI, Yamamoto Y, Tsuji W et al (2010) Overexpression of dehydroascorbate reductase, but not monodehydroascorbate reductase, confers tolerance to aluminum stress in transgenic tobacco. Planta 231:609–621

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Gruszewski HA, Chevone BI, Nessler CL (2008) An Arabidopsis purple acid phosphatase with phytase activity increases foliar ascorbate. Plant Physiol 146:431–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Lorence A, Gruszewski HA, Chevone BI, Nessler CL (2009) AMR1, an Arabidopsis gene that coordinately and negatively regulates the mannose/L-galactose ascorbic acid biosynthetic pathway. Plant Physiol 150:942–950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C, Liu J, Zhang Y, Cai X, Gong P, Zhang J et al (2010) Overexpression of SlGMEs leads to ascorbate accumulation with enhanced oxidative stress, cold, and salt tolerance in tomato. Plant Cell Rep 30:389–398

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Wang J, Zhang R, Huang R (2012) The ethylene response factor AtERF98 enhances tolerance to salt through the transcriptional activation of ascorbic acid synthesis in Arabidopsis. Plant J 71:273–287

    Article  CAS  PubMed  Google Scholar 

  • Zhang GY, Liu RR, Xu G, Zhang P, Li Y, Tang KX et al (2013) Increased alpha-tocotrienol content in seeds of transgenic rice overexpressing Arabidopsis gamma-tocopherol methyltransferase. Transgenic Res 22:89–99

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Liu T, Ren G, Hörtensteiner S, Zhou Y, Cahoon EB, Zhang C (2014) Chlorophyll degradation: the tocopherol biosynthesis related phytol hydrolase in Arabidopsis seeds is still missing. Plant Physiol 166:70–79

    Google Scholar 

  • Zhang GY, Liu RR, Zhang CQ, Tang KX, Sun MF, Yan GH, Liu QQ (2015a) Manipulation of the rice L-galactose pathway: evaluation of the effects of transgene overexpression on ascorbate accumulation and abiotic stress tolerance. PLoS ONE 10:e0125870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C, Zhang W, Ren G, Li D, Rebecca EC, Chen M, Cahoon E (2015b) Chlorophyll synthase under epigenetic surveillance is critical for vitamin E tocopherol synthesis and altered expression impacts tocopherol levels in Arabidopsis. Plant Physiol 168:1503–1511

    Google Scholar 

  • Zhang H, Si X, Ji X, Fan R, Liu J, Chen K, Gao C (2018) Genome editing of upstream open reading frames enables translational control in plants. Nat Biotechnol

    Google Scholar 

  • Zhou Y, Tao QC, Wang ZN, Fan R, Li Y, Sun XF, Tang KX (2012) Engineering ascorbic acid biosynthetic pathway in Arabidopsis leaves by single and double gene transformation. Biol Plant 56:451–457

    Article  CAS  Google Scholar 

Download references

Acknowledgements

MS and PKJ are thankful to DST-SERB, New Delhi, and UGC, New Delhi, for the award of Young Scientist fellowship (SB/YS/LS-190/2014) and BSR Faculty Fellowship (18-1/2011), respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pawan Kumar Jaiwal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sainger, M., Chaudhary, D., Jaiwal, R., Chhillar, A.K., Jaiwal, P.K. (2019). Vitamins B6-, C-, and E-Enriched Crops. In: Jaiwal, P., Chhillar, A., Chaudhary, D., Jaiwal, R. (eds) Nutritional Quality Improvement in Plants. Concepts and Strategies in Plant Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-95354-0_8

Download citation

Publish with us

Policies and ethics