Skip to main content

Biofortification in Pearl Millet: From Conception to Dissemination

  • Chapter
  • First Online:
Nutritional Quality Improvement in Plants

Abstract

Biofortification is an economical and sustainable process of delivering essential micronutrients through staple crops. The biofortified crops developed by HarvestPlus through conventional breeding continue to reach the target populations of Asia and Africa in order to reduce the burden of iron, zinc and vitamin A deficiency. Pearl millet, a dryland crop of the arid and semi-arid tropics is a suitable crop for iron biofortification as it harbours sufficient genetic variability for grain iron (Fe) and zinc (Zn) in the existing germplasm. Zn is highly correlated with grain Fe and therefore enhanced as an associated trait during the breeding for high-iron pearl millet. ICTP 8203 Fe-10-2, an iron-biofortified pearl millet (Fe-PM) variety developed via intra-population improvement of iniadi germplasm, was commercially released for cultivation in Maharashtra, India, by 2014. Efficacy trials undertaken in women and children feeding on Fe-PM meals revealed an enhancement in their micronutrient status as well as their functional outcomes. Disbursement of Fe-PM through public–private seed markets worked out to be cost-effective. Farmers readily adopted Fe-PM for cultivation based on its superior agronomic performance rather than the preference for consumer attributes. On the other hand, consumers expressed their willingness to pay for Fe-PM over regular pearl millet because of its favourable sensory characteristics. Therefore, investment on high-Fe hybrids would bridge the gap between the farmers and consumers acceptance of biofortified millets. Iron biofortification is also limited by the presence of antinutrients like phytates and polyphenols as they hinder the Fe bioavailability. The development of biofortified crops with reduced antinutrients needs careful evaluation as they have a significant role in protection against diseases and seedling growth. This review paper deliberately describes the success of high-Fe pearl millet in India and the lessons to be learnt for expanding the biofortification efforts to other small millets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AAS:

Atomic absorption spectroscopy

CGIAR:

Consultative Group on International Agricultural Research

DALY:

Disability-adjusted life year

EAR:

Estimated average requirement

EEG:

Electroencephalography

Fe:

Iron

Fe-PM:

Iron-biofortified pearl millet

G × E:

Genotype-by-environment

Hb:

Haemoglobin

ICP-OES:

Inductively coupled plasma optical emission spectroscopy

ICRISAT:

International Crops Research Institute for the Semi-Arid Tropics

Lpa :

Low-phytate mutants

NSSO:

National Sample Survey Office

OPV:

Open-pollinated variety

PA:

Phytic acid

SAU:

State Agricultural University

UNICEF:

United Nations International Children’s Emergency Fund

XRF:

X-ray fluorescence spectroscopy

Zn:

Zinc

References

  • Abdalla AA, El Tinay AH, Mohamed BE, Abdalla AH (1998) Effect of traditional processes on phytate and mineral content of pearl millet. Food Chem 63(1):79–84

    Article  CAS  Google Scholar 

  • Adams CL, Hambidge M, Raboy V, Dorsch JA, Sian L, Westcott JL, Krebs NF (2002) Zinc absorption from a low-phytic acid maize. Am J Clin Nutr 76(3):556–559

    Article  CAS  PubMed  Google Scholar 

  • Andrews DJ, Kumar KA (1992) Pearl millet for food, feed and forage. Adv Agron 48:89–139

    Article  CAS  Google Scholar 

  • Banerji A, Birol E, Karandikar B, Rampal J (2016) Information, branding, certification, and consumer willingness to pay for high-iron pearl millet: evidence from experimental auctions in Maharashtra, India. Food Policy 62:133–141

    Article  Google Scholar 

  • Basavaraj G, Rao PP, Bhagavatula S, Ahmed W (2010) Availability and utilization of pearl millet in India. SAT eJournal 8:1–6

    Google Scholar 

  • Bashir EMA, Ali AM, Ali AM, Melchinger AE, Parzies HK, Haussmann BIG (2014) Characterization of Sudanese pearl millet germplasm for agro-morphological traits and grain nutritional value. Plant Genet Res 12(1):35–47

    Article  CAS  Google Scholar 

  • Birol E, Asare-Marfo D, Karandikar B, Roy D (2011) A latent class approach to investigating farmer demand for biofortified staple food crops in developing countries: the case of high-iron pearl millet in Maharashtra, India. HarvestPlus working paper No.7, October 2011, pp 1–17

    Google Scholar 

  • Birol E, Meenakshi JV, Oparinde A, Perez S, Tomlins K (2015) Developing country consumer’s acceptance of biofortified foods: a synthesis. Food Secur 7(3):555–568

    Article  Google Scholar 

  • Boccio JR, Iyengar V (2003) Iron deficiency: causes, consequences, and strategies to overcome this nutritional problem. Biol Trace Elem Res 94(1):1–32

    Article  CAS  PubMed  Google Scholar 

  • Bouis HE (1999) Economics of enhanced micronutrient density in food staples. Field Crop Res 60(1/2):165–173

    Article  Google Scholar 

  • Bouis HE (2000) Enrichment of food staples through plant breeding: a new strategy for fighting micronutrient malnutrition. Nutrition 16(7/8):701–704

    Article  CAS  PubMed  Google Scholar 

  • Bouis HE (2003) Micronutrient fortification of plants through plant breeding: can it improve nutrition in man at low cost? Proc Nutr Sci 62(2):403–411

    Article  Google Scholar 

  • Bouis HE, Hotz C, McClafferty B, Meenakshi JV, Pfeiffer WH (2011) Biofortification: a new tool to reduce micronutrient malnutrition. Food Nutr Bull 32:31S–40S

    Article  Google Scholar 

  • Bregitzer P, Raboy V (2006) Effects of four independent low-phytate mutations on barley agronomic performance. Crop Sci 46(3):1318–1322

    Article  Google Scholar 

  • Burger A, Høgh-Jensen H, Gondah J, Hash CT, Haussmann BIG (2014) Micronutrient density and stability in West African pearl millet—potential for biofortification. Crop Sci 54(4):1709–1720

    Article  CAS  Google Scholar 

  • Caballero B (2002) Global patterns of child health: the role of nutrition. Ann Nutr Metab 46(1):3–7

    Article  CAS  PubMed  Google Scholar 

  • Carvalho S, Vasconcelos MW (2013) Producing more with less: strategies and novel technologies for plant-based food biofortification. Food Res Int 54(1):961–971

    Article  CAS  Google Scholar 

  • Cercamondi CI, Egli IM, Mitchikpe E, Tossou F, Zeder C, Hounhouigan JD, Hurrell RF (2013) Total iron absorption by young women from iron-biofortified pearl millet composite meals is double that from regular millet meals but less than that from post-harvest iron-fortified millet meals. J Nutr 143:1376–1382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cherian B (2014) Delivery of pearl millet in India. Biofortification progress briefs, August 2014, pp 57–58

    Google Scholar 

  • Cichy KA, Forster S, Grafton KF, Hosfield GL (2005) Inheritance of seed zinc accumulation in navy bean. Crop Sci 45(3):864–870

    Article  CAS  Google Scholar 

  • Dahlberg JA, Wilson JP, Snyder T (2004) Sorghum and pearl millet: health foods and industrial products in developed countries. In: Alternative uses of sorghum and pearl millet in Asia. Proceedings of the expert meeting, ICRISAT, Patancheru, Andhra Pradesh, India, 1–4 July 2003.CFC tech paper 34, pp 42–59

    Google Scholar 

  • De Moura FF, Palmer A, Finkelstein J, Haas JD, Murray-Kolb LE, Wenger MJ, Birol E, Boy E, Peña-Rosas JP (2014) Are biofortified staple food crops improving vitamin A and iron status in women and children? New evidence from efficacy trials. Adv Nutr 5(5):568–570

    Article  PubMed  PubMed Central  Google Scholar 

  • FAO (2003) The state of food insecurity in the world. Food and Agricultural Organization of the United Nations, Rome/Geneva

    Google Scholar 

  • Finkelstein JL, Mehta S, Udipi SA, Ghugre PS, Luna SV, Wenger MJ, Murray-Kolb LE, Przybyszewski EM, Haas JD (2015) A randomized trial of iron-biofortified pearl millet in school children in India. J Nutr 145(7):1576–1581

    Article  CAS  PubMed  Google Scholar 

  • Gangashetty PI, Motagi BN, Pavan R, Roodagi MB (2016) Breeding crop plants for improved human nutrition through biofortification: progress and prospects. In: Al-Khayri JM, Jain SM, Johnson DV (eds) Advances in plant breeding strategies: agronomic, abiotic and biotic stress traits. Springer, Switzerland, pp 35–76

    Chapter  Google Scholar 

  • Gibson RS, Donavan UM, Heath MAL (1994) Dietary strategies to improve the iron and zinc nutriture of young women following a vegetarian diet. Plant Foods Hum Nutr 51(1):1–16

    Article  Google Scholar 

  • Gomez-Becerra HF, Erdem H, Yazici A, Tutus Y, Torunb B, Ozturk L (2010) Grain concentrations of protein and mineral nutrients in a large collection of spelt wheat grown under different environments. J Cereal Sci 52(3):342–349

    Article  CAS  Google Scholar 

  • Govindaraj M, Selvi B, Rajarathinam S (2009) Correlation studies for grain yield components and nutritional quality traits in pearl millet (Pennisetum glaucum (L.) R. Br.) germplasm. World J Agric Sci 5(6):686–689

    Google Scholar 

  • Govindaraj M, Selvi M, Rajarathinam S, Sumathi P (2011) Genetic variability, heritability and genetic advance in India’s pearl millet (Pennisetum glaucum (L) R. Br.) accessions for yield and nutritional quality traits. Afr J Food Agric Nutr Dev 11(3):4758–4771

    Google Scholar 

  • Govindaraj M, Rai KN, Shanmugasundaram P (2013) Combining ability and heterosis for grain iron and zinc density in pearl millet. Crop Sci 53(2):507–517

    Article  CAS  Google Scholar 

  • Graham RD, Welch RM, Bouis HE (2001) Addressing micronutrient malnutrition through enhancing the nutritional quality of staple foods: principles, perspectives and knowledge gap. Adv Agron 70:77–142

    Article  Google Scholar 

  • Gupta SK, Velu G, Rai KN, Sumalini K (2009) Association of grain iron and zinc content with grain yield and other traits in pearl millet (Pennisetum glaucum (L.) R. BR). Crop Improv 36(2):4–7

    Google Scholar 

  • Gupta SK, Rai KN, Singh P, Ameta VL, Gupta SK, Jeyalekha AK, Mahala RS, Pareek S, Swami ML, Verma YS (2015) Seed set variability under high temperatures during flowering period in pearl millet (Pennisetum glaucum L. (R.) Br.). Field Crops Res 171:41–53

    Article  Google Scholar 

  • Haas JE (2014) Efficacy and other nutrition evidence for iron crops. Biofortification progress briefs, August 2014, pp 39–40

    Google Scholar 

  • Haas JD, Brownlie T (2001) Iron deficiency and reduced work capacity: a critical review of the research to determine a causal relationship. J Nutr 131(Suppl):676S–88S

    Article  CAS  PubMed  Google Scholar 

  • Hambidge MK, Miller LV, Westcott JE, Sheng X, Krebs NF (2010) Zinc bioavailability and homeostasis. Am J Clin Nutr 91(5):1478S–1483S

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirschi K (2009) Nutrient biofortification of food crops. Ann Rev Nutr 29:401–421

    Article  CAS  Google Scholar 

  • Hotz C (2013) Biofortification. In: Caballero B, Allen L, Prentice A (eds) Encyclopedia of human nutrition, vol 1. Elsevier, Oxford, UK, pp 175–181

    Chapter  Google Scholar 

  • Hotz C, McClafferty B (2007) From harvest to health: challenges for developing biofortified staple foods and determining their impact on micronutrient status. Food Nutr Bull 28(2 suppl):S271–S279

    Article  PubMed  Google Scholar 

  • Huey SL, Venkatramanan S, Udipi SA, Finkelstein JL, Ghugre P, Haas JD, Thakker V, Thorat A, Salvi A, Kurpad AV, Mehta S (2017) Acceptability of iron- and zinc-biofortified pearl millet (ICTP-8203)-based complementary foods among children in an urban slum of Mumbai, India. Front Nutr 4:39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hurrell RF (2003) Influence of vegetable protein sources on trace element and mineral bioavailability. J Nutr 133(9):S2973–S2977

    Article  Google Scholar 

  • ICMR (2009) Nutrient requirements and recommended dietary allowances for Indians: a report of the expert group of the Indian Council of Medical Research 2009. National Institute of Nutrition, Hyderabad

    Google Scholar 

  • Kanatti A, Rai K, Radhika K, Govindaraj M, Sahrawat KL, Rao AS (2014) Grain iron and zinc density in pearl millet: combining ability, heterosis and association with grain yield and grain size. SpringerPlus 3:763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kodkany BS, Bellad RM, Mahantshetti NS, Westcott JE, Krebs NF, Kemp JF, Hambidge KM (2013) Biofortification of pearl millet with iron and zinc in a randomized controlled trial increases absorption of these minerals above physiologic requirements in young children. J Nutr 143(9):1489–1493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krishnaswamy K (2009) The problem and consequences of the double burden—a brief overview. In: Programme and abstracts. Symposium on nutritional security for India—issues and way forward, Indian National Science Academy, New Delhi, pp 5–6

    Google Scholar 

  • Lemke S (2005) Nutrition security, livelihoods and HIV/AIDS: implications for research among farm worker households in South Africa. Public Health Nutr 8(7):844–852

    Article  CAS  PubMed  Google Scholar 

  • Lestienne I, Icardnière C, Mouquet C, Picq C, Trèche S (2005) Effect of soaking whole cereal and legume seeds on iron, zinc and phytate contents. Food Chem 89(3):421–425

    Article  CAS  Google Scholar 

  • Liu ZH, Wang HY, Wang XE, Zhang GP, Chen PD, Liu DJ (2006) Genotypic and spike positional difference in grain phytase activity, phytate, inorganic phosphorus, iron, and zinc contents in wheat (Triticum aestivum L.). J Cereal Sci 44(2):212–219

    Google Scholar 

  • Lönnerdal B (2002) Phytic acid-trace element (Zn, Cu, Mn) interactions. Int J Food Sci Technol 37(7):749–758

    Article  Google Scholar 

  • Mayer JE, Pfeiffer WH, Beyer P (2008) Biofortified crops to alleviate micronutrient malnutrition. Plant Biol 11(2):166–170

    CAS  Google Scholar 

  • Meenakshi JV, Nancy J, Manyong V, De Groote H, Javelosa J, Yanggen D, Naher F, Garcia J, Gonzales C, Ming E (2010) How cost effective is biofortification in combating micronutrient malnutrition? An ex ante assessment. World Dev 38(1):64–75

    Article  Google Scholar 

  • Mendoza C (2002) Effect of genetically modified low phytic acid plants on mineral absorption. Int J Food Sci Technol 37(7):759–767

    Article  CAS  Google Scholar 

  • Nestel P, Bouis H, Meenakshi JV, Pfeiffer W (2006) Biofortification of staple food crops. J Nutr 136(4):1064–1067

    Article  CAS  PubMed  Google Scholar 

  • Pfeiffer W, McClafferty B (2007) Biofortification: breeding micronutrient-dense crops. In: Kang MS, Priyadarshan PM (eds) Breeding major food staples. Blackwell Publishing, Ames, pp 61–91

    Chapter  Google Scholar 

  • Raboy V (2003) myo-Inositol-1–6-hexakisphosphate. Phytochemistry 64(6):1033–1043

    Article  CAS  PubMed  Google Scholar 

  • Raboy V (2007) Seed phosphorus and the development of low-phytate crops. In: Turner BL, Richardson AE, Mullaney EJ (eds) Inositol phosphates: linking agriculture and the environment. CABI, Wallingford, UK, pp 111–132

    Google Scholar 

  • Rai KN, Anand Kumar K, Andrews DJ, Rao AS, Raj AGB, Witcombe JR (1990) Registration of ICTP 8203 pearl millet. Crop Sci 30:959

    Article  Google Scholar 

  • Rai KN, Yadav OP, Rajpurohit BS, Patil HT, Govindaraj M, Khairwal IS, Rao AS, Shivade H, Pawar VY, Kulkarni MP (2013) Breeding pearl millet cultivars for high iron density with zinc density as an associated trait. J SAT Agric Res 11:1–7

    Google Scholar 

  • Rai KN, Patil HT, Yadav OP, Govindaraj M, Khairwal IS, Cherian B, Rajpurohit BS, Rao AS, Shivade H, Kulkarni MP (2014) Dhanashakti: a high-iron pearl millet variety. Indian Farming 64(7):32–34

    Google Scholar 

  • Rai K (2014) Iron pearl millet. Biofortification progress briefs, August 2014, pp 7–8

    Google Scholar 

  • Reddy BVS, Ramesh S, Longvah T (2005) Prospects of breeding for micronutrients and β-carotene-dense sorghums. Int Sorghum Millets Newslett 46:10–14

    Google Scholar 

  • Rosegrant MW, Cline SA (2003) Global food security: challenges and policies. Science 302(5652):1917–1919

    Article  CAS  PubMed  Google Scholar 

  • Saltzman A, Birol E, Bouis H, Boy E, De Moura FF, Islam Y, Pfeiffer WH (2013) Biofortification: progress toward a more nourishing future. Glob Food Secur 2(1):9–17

    Article  Google Scholar 

  • Sehgal S, Kawatra A, Singh G (2004) Recent advances in pearl millet and sorghum processing and food product development. In: Alternative uses of sorghum and pearl millet in Asia. Proceedings of the expert meeting, ICRISAT, Patancheru, Andhra Pradesh, India, 1–4 July 2003. CFC technical paper no. 34, pp 60–92

    Google Scholar 

  • Shafii B, Price WJ (1998) Analysis of genotype-by environment interaction using the additive main effects and multiplicative interaction model and stability estimates. J Agric Biol Environ Stat 3:335–345

    Article  Google Scholar 

  • Shivran AC (2016) Biofortification for nutrient-rich Millets. In: Singh U, Praharaj C, Singh S, Singh N (eds) Biofortification of food crops. Springer, New Delhi, pp 409–420

    Google Scholar 

  • Skalicky A, Meyers A, Adams W, Yang Z, Cook JT, Frank DA (2006) Child food insecurity and iron deficiency anemia in low income infants and toddlers in the United States. Matern Child Health J 10(2):177–185

    Google Scholar 

  • Stangoulis J, Guild G (2014) Measuring trace micronutrient levels in crops. Biofortification progress briefs, August 2014, pp 27–28

    Google Scholar 

  • Stangoulis JCR, Huynh BL, Welch RM, Choi EY, Graham RD (2007) Quantitative trait loci for phytate in rice grain and their relationship with grain micronutrients content. Euphytica 154(3):289–294

    Article  Google Scholar 

  • Stein AJ, Meenakshi JV, Qaim M (2005) Analyzing the health benefits of biofortified staple crops by means of the disability-adjusted life years approach: a handbook focusing on iron, zinc and vitamin A. HarvestPlus technical monograph 4. IFPRI/CIAT, Washington, DC

    Google Scholar 

  • Tako E, Beebe SE, Reed S, Hart JJ, Glahn RP (2014) Polyphenolic compounds appear to limit the nutritional benefit of biofortified higher iron black bean (Phaseolus vulgaris L.). Nutr J 13:28

    Google Scholar 

  • Tako E, Reed SM, Budiman J, Hart JJ, Glahn RP (2015) Higher iron pearl millet (Pennisetum glaucum L.) provides more absorbable iron that is limited by increased polyphenolic content. Nutr J 14:11

    Google Scholar 

  • UNICEF (2004) Vitamin and mineral deficiency, a global progress report. UNICEF and micronutrient initiative. http://www.unicef.org

  • Velu G, Rai KN, Muralidharan V, Kulkarni VN, Longvah T, Raveendran TS (2007) Prospects of breeding biofortified pearl millet with high grain iron and zinc contents. Plant Breed 126(2):182–185

    Article  CAS  Google Scholar 

  • Velu G, Rai KN, Sahrawat KL et al (2008) Variability for grain iron and zinc contents in pearl millet hybrids. J SAT Agric Res 6:1–4

    Google Scholar 

  • Velu G, Rai KN, Muralidharan V (2011) Gene effects and heterosis for grain iron and zinc density in pearl millet (Pennisetum glaucum (L.) R. Br). Euphytica 180(2):251–259

    Google Scholar 

  • Vucenik I, Shamsuddin AM (2003) Cancer inhibition by inositol hexaphosphate (IP6) and inositol: from laboratory to clinic. J Nutr 133(11):3778S–3784S

    Article  CAS  PubMed  Google Scholar 

  • Vucenik I, Shamsuddin AM (2006) Protection against cancer by dietary IP6 and inositol. Nutr Cancer 55(2):109–125

    Article  CAS  PubMed  Google Scholar 

  • Waters BM, Grusak MA (2008) Quantitative trait locus mapping for seed mineral concentrations in two Arabidopsis thaliana recombinant inbred populations. New Phytol 179(4):1033–1047

    Article  CAS  PubMed  Google Scholar 

  • Welch RM, Graham RD (1999) A new paradigm for world agriculture: meeting human needs: productive, sustainable, nutritious. Field Crop Res 60(1–2):1–10

    Article  Google Scholar 

  • White PJ, Broadley MR (2005) Biofortifying crops with essential mineral elements. Trends Plant Sci 10(12):586–593

    Article  CAS  PubMed  Google Scholar 

  • White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in human diets—iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol 182:49–84

    Article  CAS  PubMed  Google Scholar 

  • Winkler JT (2011) Biofortification: improving the nutritional quality of staple crops. In: Pasternak C (ed) Access not excess. Smith-Gordon Publishing, UK, pp 100–112

    Google Scholar 

  • Zern TL, Fernandez ML (2005) Cardioprotective effects of dietary polyphenols. J Nutr 135(10):2291–2294

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge with sincere thanks the financial support received from Loyola College–Times of India Major Research Project Scheme (Project approval code: 4LCTOI14PBB001) and University Grants Commission, New Delhi Research Award Scheme (F.30-1/2014/RA-2014-16-GE-TAM-5825 SA-II), for their research on millet biofortification.

Conflict of Interest Statement: The authors declare that the manuscript was written in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramalingam Ravindhran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vinoth, A., Ravindhran, R. (2019). Biofortification in Pearl Millet: From Conception to Dissemination. In: Jaiwal, P., Chhillar, A., Chaudhary, D., Jaiwal, R. (eds) Nutritional Quality Improvement in Plants. Concepts and Strategies in Plant Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-95354-0_14

Download citation

Publish with us

Policies and ethics