Skip to main content

Mechanistic, Mechanistic-Based Empirical, and Continuum-Based Concepts and Models for the Transport of Polyelectrolyte-Modified Nanoscale Zerovalent Iron (NZVI) in Saturated Porous Media

  • Chapter
  • First Online:
Nanoscale Zerovalent Iron Particles for Environmental Restoration

Abstract

Controlled emplacement of polyelectrolyte-modified NZVI at a high particle concentration (1–10 g/L) is needed for effective in situ subsurface remediation. For this reason, a modeling tool capable of predicting polyelectrolyte-modified NZVI transport is imperative. However, the deep bed filtration theory is invalid for this purpose because several phenomena governing the transport of polyelectrolyte-modified NZVI in saturated porous media, including detachment, particle agglomeration, straining, and porous media ripening, violate the fundamental assumption of such a classical theory. Thus, this chapter critically reviews the literature of each phenomenon with various kinds of nanoparticles with a special focus on polyelectrolyte-modified NZVI. Then, each phenomenon is elaborated using three kinds of mathematical models, including mechanistic (such as extended DLVO theory), mechanistic-based empirical (correlations to predict NZVI agglomeration and deposition), and continuum-based (Eulerian continuum-based models). These proposed modeling tools can be applied at various scales from column experiments (1-D) to field-scaled operations (3-D) for designing NZVI injection and emplacement in the subsurface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abel, J. S., Stangle, G. C., Schilling, C. H., & Aksay, I. A. (1994). Sedimentation in flocculating colloidal suspensions. Journal of Materials Research, 9, 451–461.

    Article  CAS  Google Scholar 

  • Abu-Lail, N. I., & Camesano, T. A. (2003). Role of ionic strength on the relationship of biopolymer conformation, dlvo contributions, and steric interactions to bioadhesion of Pseudomonas putidaKT2442. Biomacromolecules, 4, 1000–1012.

    Article  CAS  Google Scholar 

  • Adamczyk, Z., Nattich-Rak, M., Sadowska, M., Michna, A., & Szczepaniak, K. (2013). Mechanisms of nanoparticle and bioparticle deposition–Kinetic aspects. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 439, 3–22.

    Article  CAS  Google Scholar 

  • Adamczyk, Z., Siwek, B., Zembala, M., & Belouschek, P. (1994). Kinetics of localized adsorption of colloid particles. Advances in Colloid and Interface Science, 48, 151–280.

    Article  Google Scholar 

  • Adamczyk, Z., & Weroński, P. (1999). Application of the DLVO theory for particle deposition problems. Advances in Colloid and Interface Science, 83, 137–226.

    Article  CAS  Google Scholar 

  • Argiller, J. F., & Tirrell, M. (1992). Adsorption of water soluble ionic/hydrophobic diblock copolymer on a hydrophobic surface. Theoretica Chimica Acta, 82, 343–350.

    Article  Google Scholar 

  • Auset, M., & Keller, A. A. (2006). Pore-scale visualization of colloid straining and filtration in saturated porous media using micromodels. Water Resources Research, 42, W12S02.

    Article  Google Scholar 

  • Baalousha, M. (2009). Aggregation and disaggregation of iron oxide nanoparticles: Influence of particle concentration, pH and natural organic matter. Science of the Total Environment, 407, 2093–2101.

    Article  CAS  Google Scholar 

  • Baalousha, M., Cornelis, G., Kuhlbusch, T., Lynch, I., Nickel, C., Peijnenburg, W., & van den Brink, N. (2016). Modeling nanomaterials fate and uptake in the environment: Current knowledge and future trends. Environmental Science: Nano, 3, 323–345.

    CAS  Google Scholar 

  • Babakhani, P., Bridge, J., Doong, R.-A., & Phenrat, T. (2017). Continuum-based models and concepts for the transport of nanoparticles in saturated porous media: A state-of-the-science review. Advances in Colloid and Interface Science, 246, 75–104.

    Article  CAS  Google Scholar 

  • Babakhani, P., Fagerlund, F., Shamsai, A., Lowry, G. V., & Phenrat, T. (2018). Modified MODFLOW-based model for simulating the agglomeration and transport of polymer-modified Fe0 nanoparticles in saturated porous media. Environmental Science and Pollution Research, 25(8), 7180–7199.

    Article  CAS  Google Scholar 

  • Bai, R., & Tien, C. (1996). A new correlation for the initial filter coefficient under unfavorable surface interactions. Journal of Colloid and Interface Science, 179, 631–634.

    Article  CAS  Google Scholar 

  • Bai, R., & Tien, C. (1999). Particle deposition under unfavorable surface interactions. Journal of Colloid and Interface Science, 218, 488–499.

    Article  CAS  Google Scholar 

  • Bardos, P., Bone, B., Daly, P., Elliott, D., Jones, S., Lowry, G., & Merly, C. (2014). A risk/benefit appraisal for the application of nano-scale zero valent iron (nZVI) for the remediation of contaminated sites, “Taking Nanotechnological Remediation Processes from Lab Scale to End User Applications for the Restoration of a Clean Environment”. NANOREM, Supporting MS3, EU, 7th FP, NMP.2012.1.2.

    Google Scholar 

  • Basnet, M., Di Tommaso, C., Ghoshal, S., & Tufenkji, N. (2015). Reduced transport potential of a palladium-doped zero valent iron nanoparticle in a water saturated loamy sand. Water Research, 68, 354–363.

    Article  CAS  Google Scholar 

  • Basnet, M., Ghoshal, S., & Tufenkji, N. (2013). Rhamnolipid biosurfactant and soy protein act as effective stabilizers in the aggregation and transport of palladium-doped zerovalent iron nanoparticles in saturated porous media. Environmental Science & Technology, 47, 13355–13364.

    Article  CAS  Google Scholar 

  • Ben-Moshe, T., Dror, I., & Berkowitz, B. (2010). Transport of metal oxide nanoparticles in saturated porous media. Chemosphere, 81, 387–393.

    Article  CAS  Google Scholar 

  • Bergendahl, J., & Grasso, D. (2000). Prediction of colloid detachment in a model porous media: hydrodynamics. Chemical Engineering Science, 55, 1523–1532.

    Article  CAS  Google Scholar 

  • Birkner, F. B., & Morgan, J. J. (1968). Polymer flocculation kinetics of dilute colloidal suspensions. Journal (American Water Works Association), 60, 175–191.

    Article  CAS  Google Scholar 

  • Bolster, C. H., Mills, A. L., Hornberger, G. M., & Herman, J. S. (1999). Spatial distribution of deposited bacteria following miscible displacement experiments in intact cores. Water Resources Research, 35, 1797–1807.

    Article  CAS  Google Scholar 

  • Bottero, J.-Y., Auffan, M., Borschnek, D., Chaurand, P., Labille, J., Levard, C., Masion, A., Tella, M., Rose, J., & Wiesner, M. R. (2015). Nanotechnology, global development in the frame of environmental risk forecasting. A necessity of interdisciplinary researches. Comptes Rendus Geoscience, 347, 35–42.

    Article  Google Scholar 

  • Bradford, S. A., & Bettahar, M. (2006). Concentration dependent transport of colloids in saturated porous media. Journal of Contaminant Hydrology, 82, 99–117.

    Article  CAS  Google Scholar 

  • Bradford, S. A., Simunek, J., Bettahar, M., van Genuchten, M. T., & Yates, S. R. (2003). Modeling colloid attachment, straining, and exclusion in saturated porous media. Environmental Science & Technology, 37, 2242–2250.

    Article  CAS  Google Scholar 

  • Bradford, S. A., Simunek, J., Bettahar, M., van Genuchten, M. T., & Yates, S. R. (2006a). Significance of straining in colloid deposition: Evidence and implications. Water Resources Research, 42, W12S15.

    Google Scholar 

  • Bradford, S. A., Simunek, J., & Walker, S. L. (2006b). Transport and straining of E. coli O157: H7 in saturated porous media. Water Resources Research, 42, W12S12.

    Google Scholar 

  • Bradford, S. A., & Toride, N. (2007). A stochastic model for colloid transport and deposition. Journal of Environmental Quality, 36, 1346–1356.

    Article  CAS  Google Scholar 

  • Bradford, S. A., & Torkzaban, S. (2008). Colloid transport and retention in unsaturated porous media: A review of interface-, collector-, and pore-scale processes and models. Vadose Zone Journal, 7, 667–681.

    Article  Google Scholar 

  • Bradford, S. A., & Torkzaban, S. (2015). Determining parameters and mechanisms of colloid retention and release in porous media. Langmuir, 31, 12096–12105.

    Article  CAS  Google Scholar 

  • Bradford, S. A., Torkzaban, S., Leij, F., & Simunek, J. (2015). Equilibrium and kinetic models for colloid release under transient solution chemistry conditions. Journal of Contaminant Hydrology, 181, 141–152.

    Article  CAS  Google Scholar 

  • Bradford, S. A., Torkzaban, S., & Simunek, J. (2011a). Modeling colloid transport and retention in saturated porous media under unfavorable attachment conditions. Water Resources Research, 47, W10503.

    Article  CAS  Google Scholar 

  • Bradford, S. A., Torkzaban, S., & Wiegmann, A. (2011b). Pore-scale simulations to determine the applied hydrodynamic torque and colloid immobilization. Vadose Zone Journal, 10, 252–261.

    Article  Google Scholar 

  • Bradford, S. A., Wang, Y., Kim, H., Torkzaban, S., & Šimůnek, J. (2014). Modeling microorganism transport and survival in the subsurface. Journal of Environmental Quality, 43, 421–440.

    Article  CAS  Google Scholar 

  • Bradford, S. A., Yates, S. R., Bettahar, M., & Simunek, J. (2002). Physical factors affecting the transport and fate of colloids in saturated porous media. Water Resources Research, 38, 63–61.

    Article  Google Scholar 

  • Braun, A., Klumpp, E., Azzam, R., & Neukum, C. (2014). Transport and deposition of stabilized engineered silver nanoparticles in water saturated loamy sand and silty loam. Science of the Total Environment, 535, 102–112.

    Article  CAS  Google Scholar 

  • Chakraborti, R. K., Gardner, K. H., Atkinson, J. F., & Van Benschoten, J. E. (2003). Changes in fractal dimension during aggregation. Water Research, 37, 873–883.

    Article  CAS  Google Scholar 

  • Chatterjee, J., Abdulkareem, S., & Gupta, S. K. (2010). Estimation of colloidal deposition from heterogeneous populations. Water Research, 44, 3365–3374.

    Article  CAS  Google Scholar 

  • Chatterjee, J., & Gupta, S. K. (2009). An agglomeration-based model for colloid filtration. Environmental Science & Technology, 43, 3694–3699.

    Article  CAS  Google Scholar 

  • Chen, G., Liu, X., & Su, C. (2011). Transport and retention of TiO2 rutile nanoparticles in saturated porous media under low-ionic-strength conditions: measurements and mechanisms. Langmuir, 27, 5393–5402.

    Article  CAS  Google Scholar 

  • Chen, G., Liu, X., & Su, C. (2012). Distinct effects of humic acid on transport and retention of tio2 rutile nanoparticles in saturated sand columns. Environmental Science & Technology, 46, 7142–7150.

    Article  CAS  Google Scholar 

  • Chen, K. L., & Elimelech, M. (2006). Aggregation and deposition kinetics of fullerene (C60) nanoparticles. Langmuir, 22, 10994–11001.

    Article  CAS  Google Scholar 

  • Chen, K. L., & Elimelech, M. (2007). Influence of humic acid on the aggregation kinetics of fullerene (C 60) nanoparticles in monovalent and divalent electrolyte solutions. Journal of Colloid and Interface Science, 309, 126–134.

    Article  CAS  Google Scholar 

  • Cheng, X., Kan, A. T., & Tomson, M. B. (2005). Study of C 60 transport in porous media and the effect of sorbed C 60 on naphthalene transport. Journal of Materials Research, 20, 3244–3254.

    Article  CAS  Google Scholar 

  • Chowdhury, A. I. A., Krol, M. M., Kocur, C. M., Boparai, H. K., Weber, K. P., Sleep, B. E., & O’Carroll, D. M. (2015). NZVI injection into variably saturated soils: Field and modeling study. Journal of Contaminant Hydrology, 183, 16–28.

    Article  CAS  Google Scholar 

  • Choy, C. C., Wazne, M., & Meng, X. (2008). Application of an empirical transport model to simulate retention of nanocrystalline titanium dioxide in sand columns. Chemosphere, 71, 1794–1801.

    Article  CAS  Google Scholar 

  • Chrysikopoulos, C. V., & Katzourakis, V. E. (2015). Colloid particle size-dependent dispersivity. Water Resources Research, 51, 4668.

    Article  Google Scholar 

  • Cleasby, J. L., & Baumann, E. R. (1962). Selection of sand filtration rates. Journal (American Water Works Association), 54, 579–602.

    Article  Google Scholar 

  • Comba, S., & Braun, J. (2012). A new physical model based on cascading column experiments to reproduce the radial flow and transport of micro-iron particles. Journal of Contaminant Hydrology, 140, 1–11.

    Google Scholar 

  • Cornelis, G. (2015). Fate descriptors for engineered nanoparticles: the good, the bad, and the ugly. Environmental Science: Nano, 2, 19–26.

    CAS  Google Scholar 

  • Cornelis, G., Pang, L., Doolette, C., Kirby, J. K., & McLaughlin, M. J. (2013). Transport of silver nanoparticles in saturated columns of natural soils. Science of the Total Environment, 463, 120–130.

    Article  CAS  Google Scholar 

  • Cullen, E., O’Carroll, D. M., Yanful, E. K., & Sleep, B. (2010). Simulation of the subsurface mobility of carbon nanoparticles at the field scale. Advances in Water Resources, 33, 361–371.

    Article  CAS  Google Scholar 

  • Dale, A., Casman, E. A., Lowry, G. V., Lead, J. R., Viparelli, E., & Baalousha, M. A. (2015a). Modeling nanomaterial environmental fate in aquatic systems. Environmental Science & Technology, 49, 2587–2593.

    Article  CAS  Google Scholar 

  • Dale, A. L., Lowry, G. V., & Casman, E. A. (2015b). Much ado about α: reframing the debate over appropriate fate descriptors in nanoparticle environmental risk modeling. Environmental Science: Nano, 2, 27–32.

    CAS  Google Scholar 

  • de Marsily, G. (1986). Quantitative hydrogeology; groundwater hydrology for engineers. New York: Academic Press.

    Google Scholar 

  • Deshpande, P. A., & Shonnard, D. R. (1999). Modeling the effects of systematic variation in ionic strength on the attachment kinetics of Pseudomonas fluorescens UPER-1 in saturated sand columns. Water Resources Research, 35, 1619–1627.

    Article  Google Scholar 

  • Dong, H., Zeng, G., Zhang, C., Liang, J., Ahmad, K., Xu, P., He, X., & Lai, M. (2015). Interaction between Cu 2+ and different types of surface-modified nanoscale zero-valent iron during their transport in porous media. Journal of Environmental Sciences, 32, 180–188.

    Article  CAS  Google Scholar 

  • Edmiston, P. L., Osborne, C., Reinbold, K. P., Pickett, D. C., & Underwood, L. A. (2011). Pilot scale testing composite swellable organosilica nanoscale zero-valent iron—Iron-Osorb®—for in situ remediation of trichloroethylene. Remediation Journal, 22, 105–123.

    Article  Google Scholar 

  • Ehtesabi, H., Ahadian, M. M., Taghikhani, V., & Ghazanfari, M. H. (2013). Enhanced heavy oil recovery in sandstone cores using tio2 nanofluids. Energy & Fuels, 28, 423–430.

    Article  CAS  Google Scholar 

  • El Badawy, A. M., Aly Hassan, A., Scheckel, K. G., Suidan, M. T., & Tolaymat, T. M. (2013). Key factors controlling the transport of silver nanoparticles in porous media. Environmental Science & Technology, 47, 4039–4045.

    Article  CAS  Google Scholar 

  • Elimelech, M. (1992). Predicting collision efficiencies of colloidal particles in porous media. Water Research, 26, 1–8.

    Article  CAS  Google Scholar 

  • Elimelech, M., Gregory, J., Jia, X., & Williams, R. (1995). Particle deposition and aggregation: Measurement, modeling, and simulation. Boston: Butterworth-Heinemann.

    Google Scholar 

  • Elimelech, M., Jia, X., Gregory, J., & Williams, R. (1998). Particle deposition and aggregation: Measurement, modelling and simulation. Amsterdam: Elsevier.

    Google Scholar 

  • Elimelech, M., Nagai, M., Ko, C.-H., & Ryan, J. N. (2000). Relative insignificance of mineral grain zeta potential to colloid transport in geochemically heterogeneous porous media. Environmental Science & Technology, 34, 2143–2148.

    Article  CAS  Google Scholar 

  • Elliott, D. W., & Zhang, W.-X. (2001). Field assessment of nanoscale bimetallic particles for groundwater treatment. Environmental Science & Technology, 35, 4922–4926.

    Article  CAS  Google Scholar 

  • Fallah, H., Fallah, A., Rahmani, A., Afkhami, M., & Ahmadi, A. (2012). Size exclusion mechanism, suspension flow through porous medium. International Journal of Modern Nonlinear Theory and Application, 1, 113.

    Article  Google Scholar 

  • Fan, W., Jiang, X., Lu, Y., Huo, M., Lin, S., & Geng, Z. (2015a). Effects of surfactants on graphene oxide nanoparticles transport in saturated porous media. Journal of Environmental Sciences, 35, 12–19.

    Article  CAS  Google Scholar 

  • Fan, W., Jiang, X. H., Yang, W., Geng, Z., Huo, M. X., Liu, Z. M., & Zhou, H. (2015b). Transport of graphene oxide in saturated porous media: Effect of cation composition in mixed Na–Ca electrolyte systems. Science of the Total Environment, 511, 509–515.

    Article  CAS  Google Scholar 

  • Fang, J., Shan, X.-Q., Wen, B., Lin, J.-M., & Owens, G. (2009). Stability of titania nanoparticles in soil suspensions and transport in saturated homogeneous soil columns. Environmental Pollution, 157, 1101–1109.

    Article  CAS  Google Scholar 

  • Fang, J., Xu, M.-J., Wang, D.-J., Wen, B., & Han, J.-Y. (2013). Modeling the transport of TiO2 nanoparticle aggregates in saturated and unsaturated granular media: effects of ionic strength and pH. Water Research, 47, 1399–1408.

    Article  CAS  Google Scholar 

  • Feriancikova, L., & Xu, S. (2012). Deposition and remobilization of graphene oxide within saturated sand packs. Journal of Hazardous Materials, 235, 194–200.

    Article  CAS  Google Scholar 

  • Flory, J., Kanel, S. R., Racz, L., Impellitteri, C. A., Silva, R. G., & Goltz, M. N. (2013). Influence of pH on the transport of silver nanoparticles in saturated porous media: laboratory experiments and modeling. Journal of Nanoparticle Research, 15, 1–11.

    Article  CAS  Google Scholar 

  • Foppen, J. W. A., Mporokoso, A., & Schijven, J. F. (2005). Determining straining of Escherichia coli from breakthrough curves. Journal of Contaminant Hydrology, 76, 191–210.

    Article  CAS  Google Scholar 

  • Friedlander, S. K. (1960a). On the particle-size spectrum of atmospheric aerosols. Journal of Meteorology, 17, 373–374.

    Article  Google Scholar 

  • Friedlander, S. K. (1960b). Similarity considerations for the particle-size spectrum of a coagulating, sedimenting aerosol. Journal of Meteorology, 17, 479–483.

    Article  Google Scholar 

  • Gargiulo, G., Bradford, S., Šimůnek, J., Ustohal, P., Vereecken, H., & Klumpp, E. (2007). Bacteria transport and deposition under unsaturated conditions: The role of the matrix grain size and the bacteria surface protein. Journal of Contaminant Hydrology, 92, 255–273.

    Article  CAS  Google Scholar 

  • Gargiulo, G., Bradford, S. A., Simunek, J., Ustohal, P., Vereecken, H., & Klumpp, E. (2008). Bacteria transport and deposition under unsaturated flow conditions: The role of water content and bacteria surface hydrophobicity. Vadose Zone Journal, 7, 406–419.

    Article  Google Scholar 

  • Gastone, F., Tosco, T., & Sethi, R. (2014). Guar gum solutions for improved delivery of iron particles in porous media (Part 1): Porous medium rheology and guar gum-induced clogging. Journal of contaminant hydrology, 166, 23–33.

    Article  CAS  Google Scholar 

  • Godinez, I. G., & Darnault, C. J. G. (2011). Aggregation and transport of nano-TiO2 in saturated porous media: effects of pH, surfactants and flow velocity. Water Research, 45, 839–851.

    Article  CAS  Google Scholar 

  • Golzar, M., Saghravani, S. F., & Azhdari Moghaddam, M. (2014). Experimental study and numerical solution of poly acrylic acid supported magnetite nanoparticles transport in a one-dimensional porous media. Advances in Materials Science and Engineering, 2014, 8.

    Article  CAS  Google Scholar 

  • Goudeli, E., Eggersdorfer, M. L., & Pratsinis, S. E. (2015). Coagulation–Agglomeration of fractal-like particles: Structure and self-preserving size distribution. Langmuir, 31, 1320–1327.

    Article  CAS  Google Scholar 

  • Grasso, D., Subramaniam, K., Butkus, M., Strevett, K., & Bergendahl, J. (2002). A review of non-DLVO interactions in environmental colloidal systems. Reviews in Environmental Science and Biotechnology, 1, 17–38.

    Article  CAS  Google Scholar 

  • Harendra, S., & Vipulanandan, C. (2010). Fe/Ni bimetallic particles transport in columns packed with sandy clay soil. Industrial & Engineering Chemistry Research, 50, 404–411.

    Article  CAS  Google Scholar 

  • Hariharan, R., Biver, C., Mays, J., & Russel, W. B. (1998). Ionic strength and curvature effects in flat and highly curved polyelectrolyte brushes. Macromolecules, 31, 7506–7513.

    Article  CAS  Google Scholar 

  • Harvey, R. W., & Garabedian, S. P. (1991). Use of colloid filtration theory in modeling movement of bacteria through a contaminated sandy aquifer. Environmental Science & Technology, 25, 178–185.

    Article  CAS  Google Scholar 

  • Hashemi, R., Nassar, N. N., & Pereira Almao, P. (2013). Enhanced heavy oil recovery by in situ prepared ultradispersed multimetallic nanoparticles: A study of hot fluid flooding for athabasca bitumen recovery. Energy & Fuels, 27, 2194–2201.

    Article  CAS  Google Scholar 

  • He, F., Zhang, M., Qian, T., & Zhao, D. (2009). Transport of carboxymethyl cellulose stabilized iron nanoparticles in porous media: Column experiments and modeling. Journal of Colloid and Interface Science, 334, 96–102.

    Article  CAS  Google Scholar 

  • He, J.-Z., Li, C.-C., Wang, D.-J., & Zhou, D.-M. (2015). Biofilms and extracellular polymeric substances mediate the transport of graphene oxide nanoparticles in saturated porous media. Journal of Hazardous Materials, 300, 467–474.

    Article  CAS  Google Scholar 

  • Herzig, J. P., Leclerc, D. M., & Goff, P. L. (1970). Flow of suspensions through porous media—Application to deep filtration. Industrial & Engineering Chemistry, 62, 8–35.

    Article  CAS  Google Scholar 

  • Holthoff, H., Egelhaaf, S. U., Borkovec, M., Schurtenberger, P., & Sticher, H. (1996). Coagulation rate measurements of colloidal particles by simultaneous static and dynamic light scattering. Langmuir, 12, 5541–5549.

    Article  CAS  Google Scholar 

  • Holthoff, H., Schmitt, A., Fernández-Barbero, A., Borkovec, M., ángel Cabrerızo-Vılchez, M., Schurtenberger, P., & Hidalgo-Alvarez, R. (1997). Measurement of absolute coagulation rate constants for colloidal particles: comparison of single and multiparticle light scattering techniques. Journal of Colloid and Interface Science, 192, 463–470.

    Article  CAS  Google Scholar 

  • Hosseini, S. M., & Tosco, T. (2013). Transport and retention of high concentrated nano-Fe/Cu particles through highly flow-rated packed sand column. Water Research, 47, 326–338.

    Article  CAS  Google Scholar 

  • Hotze, E. M., Phenrat, T., & Lowry, G. V. (2010). Nanoparticle aggregation: Challenges to understanding transport and reactivity in the environment. Journal of Environmental Quality, 39, 1909–1924.

    Article  CAS  Google Scholar 

  • Howington, S. E., Peters, J. F., & Illangasekare, T. H. (1997). Discrete network modeling for field-scale flow and transport through porous media. DTIC Document.

    Google Scholar 

  • Huang, P. M., Li, Y., & Sumner, M. E. (2011). Handbook of soil sciences: Properties and processes. New York: CRC Press Taylor and Francis Group an informa business.

    Book  Google Scholar 

  • Hunt, J. R. (1982). Self-similar particle-size distributions during coagulation: Theory and experimental verification. Journal of Fluid Mechanics, 122, 169–185.

    Article  Google Scholar 

  • Illangasekare, T. H., Frippiat, C. C., & Fuˇcík, R. (2010). Dispersion and mass transfer coefficients in groundwater of near-surface geologic formations. Boca Raton: CRC Press/Taylor and Francis Group.

    Google Scholar 

  • Ives, K. J. (1963). Simplified rational analysis of filter behaviour. In ICE proceedings (pp. 345–364). Thomas Telford.

    Google Scholar 

  • Ives, K. J. (1970). Rapid filtration. Water Research, 4, 201–223.

    Article  CAS  Google Scholar 

  • Iwasaki, T., Slade Jr., J. J., & Stanley, W. E. (1937). Some notes on sand filtration [with Discussion]. Journal (American Water Works Association), 29, 1591–1602.

    Article  CAS  Google Scholar 

  • Jacobson, M. Z. (2005). Fundamentals of atmospheric modeling. New York: Cambridge University Press.

    Book  Google Scholar 

  • James, S. C., & Chrysikopoulos, C. V. (2003). Effective velocity and effective dispersion coefficient for finite-sized particles flowing in a uniform fracture. Journal of Colloid and Interface Science, 263, 288–295.

    Article  CAS  Google Scholar 

  • Jeffrey, D. J. (1981). Quasi-stationary approximations for the size distribution of aerosols. Journal of the Atmospheric Sciences, 38, 2440–2443.

    Article  Google Scholar 

  • Jegatheesan, V., & Vigneswaran, S. (2005). Deep bed filtration: Mathematical models and observations. Critical Reviews in Environmental Science and Technology, 35, 515–569.

    Article  CAS  Google Scholar 

  • Jiang, X., Tong, M., & Kim, H. (2012a). Influence of natural organic matter on the transport and deposition of zinc oxide nanoparticles in saturated porous media. Journal of Colloid and Interface Science, 386, 34–43.

    Article  CAS  Google Scholar 

  • Jiang, X., Tong, M., Lu, R., & Kim, H. (2012b). Transport and deposition of ZnO nanoparticles in saturated porous media. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 401, 29–37.

    Article  CAS  Google Scholar 

  • Jiang, X., Wang, X., Tong, M., & Kim, H. (2013). Initial transport and retention behaviors of ZnO nanoparticles in quartz sand porous media coated with Escherichia coli biofilm. Environmental Pollution, 174, 38–49.

    Article  CAS  Google Scholar 

  • Johnson, C. P., Li, X., & Logan, B. E. (1996). Settling velocities of fractal aggregates. Environmental Science & Technology, 30, 1911–1918.

    Article  CAS  Google Scholar 

  • Johnson, P. R., & Elimelech, M. (1995). Dynamics of colloid deposition in porous media: Blocking based on random sequential adsorption. Langmuir, 11, 801–812.

    Article  CAS  Google Scholar 

  • Johnson, W. P., Li, X., & Assemi, S. (2007). Deposition and re-entrainment dynamics of microbes and non-biological colloids during non-perturbed transport in porous media in the presence of an energy barrier to deposition. Advances in Water Resources, 30, 1432–1454.

    Article  Google Scholar 

  • Johnson, W. P., Ma, H., & Pazmino, E. (2011). Straining credibility: A general comment regarding common arguments used to infer straining as the mechanism of colloid retention in porous media. Environmental Science & Technology, 45, 3831–3832.

    Article  CAS  Google Scholar 

  • Jones, E. H., & Su, C. (2012). Fate and transport of elemental copper (Cu 0) nanoparticles through saturated porous media in the presence of organic materials. Water Research, 46, 2445–2456.

    Article  CAS  Google Scholar 

  • Jones, E. H., & Su, C. (2014). Transport and retention of zinc oxide nanoparticles in porous media: Effects of natural organic matter versus natural organic ligands at circumneutral pH. Journal of Hazardous Materials, 275, 79–88.

    Article  CAS  Google Scholar 

  • Kanel, S. R., Flory, J., Meyerhoefer, A., Fraley, J. L., Sizemore, I. E., & Goltz, M. N. (2013). Influence of natural organic matter on fate and transport of silver nanoparticles in saturated porous media: laboratory experiments and modeling. Journal of Nanoparticle Research, 17, 1–13.

    Google Scholar 

  • Kasel, D., Bradford, S. A., Šimůnek, J., Heggen, M., Vereecken, H., & Klumpp, E. (2013). Transport and retention of multi-walled carbon nanotubes in saturated porous media: Effects of input concentration and grain size. Water Research, 47, 933–944.

    Article  CAS  Google Scholar 

  • Keir, G., Jegatheesan, V., & Vigneswaran, S. (2009). Deep bed filtration: modeling theory and practice. In V. Saravanamuthu (Ed.), Water and wastewater treatment technologies (pp. 263–307). Oxford, UK: Eolss Publishers.

    Google Scholar 

  • Keller, A. A., Sirivithayapakorn, S., & Chrysikopoulos, C. V. (2004). Early breakthrough of colloids and bacteriophage MS2 in a water-saturated sand column. Water Resources Research, 40, W08304.

    Google Scholar 

  • Kelly, R. A., Jakeman, A. J., Barreteau, O., Borsuk, M. E., ElSawah, S., Hamilton, S. H., Henriksen, H. J., Kuikka, S., Maier, H. R., & Rizzoli, A. E. (2013). Selecting among five common modelling approaches for integrated environmental assessment and management. Environmental Modelling & Software, 47, 159–181.

    Article  Google Scholar 

  • Kini, G. C., Yu, J., Wang, L., Kan, A. T., Biswal, S. L., Tour, J. M., Tomson, M. B., & Wong, M. S. (2014). Salt-and temperature-stable quantum dot nanoparticles for porous media flow. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 443, 492–500.

    Article  CAS  Google Scholar 

  • Köber, R., Hollert, H., Hornbruch, G., Jekel, M., Kamptner, A., Klaas, N., Maes, H., Mangold, K. M., Martac, E., & Matheis, A. (2014). Nanoscale zero-valent iron flakes for groundwater treatment. Environmental Earth Sciences, 72, 3339–3352.

    Article  CAS  Google Scholar 

  • Kocur, C. M., O'Carroll, D. M., & Sleep, B. E. (2013). Impact of nZVI stability on mobility in porous media. Journal of Contaminant Hydrology, 145, 17–25.

    Article  CAS  Google Scholar 

  • Kretzschmar, R., Borkovec, M., Grolimund, D., & Elimelech, M. (1999). Mobile subsurface colloids and their role in contaminant transport. Advances in Agronomy, 66, 121–193.

    Article  CAS  Google Scholar 

  • Krol, M. M., Oleniuk, A. J., Kocur, C. M., Sleep, B. E., Bennett, P., Xiong, Z., & O’Carroll, D. M. (2013). A field-validated model for in situ transport of polymer-stabilized nZVI and implications for subsurface injection. Environmental Science & Technology, 47, 7332–7340.

    Article  CAS  Google Scholar 

  • Kurlanda-Witek, H., Ngwenya, B. T., & Butler, I. B. (2014). Transport of bare and capped zinc oxide nanoparticles is dependent on porous medium composition. Journal of Contaminant Hydrology, 162, 17–26.

    Article  CAS  Google Scholar 

  • Kuznar, Z. A., & Elimelech, M. (2007). Direct microscopic observation of particle deposition in porous media: Role of the secondary energy minimum. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 294, 156–162.

    Article  CAS  Google Scholar 

  • Landkamer, L. L., Harvey, R. W., Scheibe, T. D., & Ryan, J. N. (2013). Colloid transport in saturated porous media: Elimination of attachment efficiency in a new colloid transport model. Water Resources Research, 49, 2952–2965.

    Article  Google Scholar 

  • Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 40, 1361–1403.

    Article  CAS  Google Scholar 

  • Lanphere, J. D., Luth, C. J., & Walker, S. L. (2013). Effects of solution chemistry on the transport of graphene oxide in saturated porous media. Environmental Science & Technology, 47, 4255–4261.

    Article  CAS  Google Scholar 

  • Laumann, S., Micić, V., & Hofmann, T. (2014). Mobility enhancement of nanoscale zero-valent iron in carbonate porous media through co-injection of polyelectrolytes. Water Research, 50, 70–79.

    Article  CAS  Google Scholar 

  • Laumann, S., Micić, V., Lowry, G. V., & Hofmann, T. (2013). Carbonate minerals in porous media decrease mobility of polyacrylic acid modified zero-valent iron nanoparticles used for groundwater remediation. Environmental Pollution, 179, 53–60.

    Article  CAS  Google Scholar 

  • Lee, D. G., Bonner, J. S., Garton, L. S., Ernest, A. N. S., & Autenrieth, R. L. (2000). Modeling coagulation kinetics incorporating fractal theories: A fractal rectilinear approach. Water Research, 34, 1987–2000.

    Article  CAS  Google Scholar 

  • Lee, D. G., Bonner, J. S., Garton, L. S., Ernest, A. N. S., & Autenrieth, R. L. (2002). Modeling coagulation kinetics incorporating fractal theories: Comparison with observed data. Water Research, 36, 1056–1066.

    Article  CAS  Google Scholar 

  • Li, X.-Y., & Logan, B. E. (2001). Permeability of fractal aggregates. Water Research, 35, 3373–3380.

    Article  CAS  Google Scholar 

  • Li, X., & Logan, B. E. (1997). Collision frequencies of fractal aggregates with small particles by differential sedimentation. Environmental Science & Technology, 31, 1229–1236.

    Article  CAS  Google Scholar 

  • Li, X., Scheibe, T. D., & Johnson, W. P. (2004). Apparent decreases in colloid deposition rate coefficients with distance of transport under unfavorable deposition conditions: A general phenomenon. Environmental Science & Technology, 38, 5616–5625.

    Article  CAS  Google Scholar 

  • Li, X., Zhang, P., Lin, C. L., & Johnson, W. P. (2005). Role of hydrodynamic drag on microsphere deposition and re-entrainment in porous media under unfavorable conditions. Environmental Science & Technology, 39, 4012–4020.

    Article  CAS  Google Scholar 

  • Li, Z., Hassan, A. A., Sahle-Demessie, E., & Sorial, G. A. (2013). Transport of nanoparticles with dispersant through biofilm coated drinking water sand filters. Water Research, 47, 6457–6466.

    Article  CAS  Google Scholar 

  • Li, Z., Sahle-Demessie, E., Hassan, A. A., & Sorial, G. A. (2011). Transport and deposition of CeO2 nanoparticles in water-saturated porous media. Water Research, 45, 4409–4418.

    Article  CAS  Google Scholar 

  • Liang, Y., Bradford, S. A., Simunek, J., Heggen, M., Vereecken, H., & Klumpp, E. (2013a). Retention and remobilization of stabilized silver nanoparticles in an undisturbed loamy sand soil. Environmental Science & Technology, 47, 12229–12237.

    Article  CAS  Google Scholar 

  • Liang, Y., Bradford, S. A., Simunek, J., Vereecken, H., & Klumpp, E. (2013b). Sensitivity of the transport and retention of stabilized silver nanoparticles to physicochemical factors. Water Research, 47, 2572–2582.

    Article  CAS  Google Scholar 

  • Limousin, G., Gaudet, J. P., Charlet, L., Szenknect, S., Barthès, V., & Krimissa, M. (2007). Sorption isotherms: A review on physical bases, modeling and measurement. Applied Geochemistry, 22, 249–275.

    Article  CAS  Google Scholar 

  • Lin, S., & Wiesner, M. R. (2012). Deposition of aggregated nanoparticles – A theoretical and experimental study on the effect of aggregation state on the affinity between nanoparticles and a collector surface. Environmental Science & Technology, 46, 13270–13277.

    Article  CAS  Google Scholar 

  • Liu, H. H., Surawanvijit, S., Rallo, R., Orkoulas, G., & Cohen, Y. (2011). Analysis of nanoparticle agglomeration in aqueous suspensions via constant-number Monte Carlo simulation. Environmental Science & Technology, 45, 9284–9292.

    Article  CAS  Google Scholar 

  • Liu, L., Gao, B., Wu, L., Sun, Y., & Zhou, Z. (2015). Effects of surfactant type and concentration on graphene retention and transport in saturated porous media. Chemical Engineering Journal, 262, 1187–1191.

    Article  CAS  Google Scholar 

  • Liu, L., Gao, B., Wu, L., Yang, L., Zhou, Z., & Wang, H. (2013). Effects of pH and surface metal oxyhydroxides on deposition and transport of carboxyl-functionalized graphene in saturated porous media. Journal of Nanoparticle Research, 15, 1–8.

    Google Scholar 

  • Logan, B. E., Jewett, D. G., Arnold, R. G., Bouwer, E. J., & O'Melia, C. R. (1995a). Clarification of clean-bed filtration models. Journal of Environmental Engineering, 121, 869–873.

    Article  CAS  Google Scholar 

  • Logan, B. E., Passow, U., Alldredge, A. L., Grossartt, H.-P., & Simont, M. (1995b). Rapid formation and sedimentation of large aggregates is predictable from coagulation rates (half-lives) of transparent exopolymer particles (TEP). Deep Sea Research Part II: Topical Studies in Oceanography, 42, 203–214.

    Article  Google Scholar 

  • Lv, X., Gao, B., Sun, Y., Shi, X., Xu, H., & Wu, J. (2014). Effects of humic acid and solution chemistry on the retention and transport of cerium dioxide nanoparticles in saturated porous media. Water, Air, & Soil Pollution, 225, 1–9.

    Article  CAS  Google Scholar 

  • McDowell-Boyer, L. M., Hunt, J. R., & Sitar, N. (1986). Particle transport through porous media. Water Resources Research, 22, 1901–1921.

    Article  Google Scholar 

  • Mehmani, Y., & Balhoff, M. T. (2015a). Eulerian network modeling of longitudinal dispersion. Water Resources Research, 51, 8586–8606.

    Article  Google Scholar 

  • Mehmani, Y., & Balhoff, M. T. (2015b). Mesoscale and hybrid models of fluid flow and solute transport. Reviews in Mineralogy and Geochemistry, 80, 433–459.

    Article  Google Scholar 

  • Meng, Z., Hashmi, S. M., & Elimelech, M. (2013). Aggregation rate and fractal dimension of fullerene nanoparticles via simultaneous multiangle static and dynamic light scattering measurement. Journal of Colloid and Interface Science, 392, 27–33.

    Article  CAS  Google Scholar 

  • Molnar, I. L., Johnson, W. P., Gerhard, J. I., Willson, C. S., & O’Carroll, D. M. (2015). Predicting colloid transport through saturated porous media: A critical review. Water Resources Research, 51, 6804–6845.

    Article  Google Scholar 

  • Nascimento, A. G., Totola, M. R., Souza, C. S., Borges, M. T., & Borges, A. C. (2006). Temporal and spatial dynamics of blocking and ripening effects on bacterial transport through a porous system: A possible explanation for CFT deviation. Colloids and Surfaces B: Biointerfaces, 53, 241–244.

    Article  CAS  Google Scholar 

  • Neukum, C., Braun, A., & Azzam, R. (2014a). Transport of engineered silver (Ag) nanoparticles through partially fractured sandstones. Journal of Contaminant Hydrology, 164, 181–192.

    Article  CAS  Google Scholar 

  • Neukum, C., Braun, A., & Azzam, R. (2014b). Transport of stabilized engineered silver (Ag) nanoparticles through porous sandstones. Journal of Contaminant Hydrology, 158, 1–13.

    Article  CAS  Google Scholar 

  • Nowack, B., Baalousha, M., Bornhöft, N., Chaudhry, Q., Cornelis, G., Cotterill, J., Gondikas, A., Hassellöv, M., Lead, J., & Mitrano, D. M. (2015). Progress towards the validation of modeled environmental concentrations of engineered nanomaterials by analytical measurements. Environmental Science: Nano, 2, 421.

    CAS  Google Scholar 

  • O'Carroll, D. M., Bradford, S. A., & Abriola, L. M. (2004). Infiltration of PCE in a system containing spatial wettability variations. Journal of Contaminant Hydrology, 73, 39–63.

    Article  CAS  Google Scholar 

  • O’Carroll, D., Sleep, B., Krol, M., Boparai, H., & Kocur, C. (2012). Nanoscale zero valent iron and bimetallic particles for contaminated site remediation. Advances in Water Resources, 51, 104–122.

    Article  CAS  Google Scholar 

  • Parker, J. C., Van Genuchten, T., & Virginia Agricultural Experiment, S. (1984). Determining transport parameters from laboratory and field tracer experiments. Virginia: Virginia Agricultural Experiment Station.

    Google Scholar 

  • Peijnenburg, W., Praetorius, A., Scott-Fordsmand, J., & Cornelis, G. (2016). Fate assessment of engineered nanoparticles in solids dominated media–Current insights and the way forward. Environmental Pollution, 218, 1365–1369.

    Article  CAS  Google Scholar 

  • Petosa, A. R., Jaisi, D. P., Quevedo, I. R., Elimelech, M., & Tufenkji, N. (2010). Aggregation and deposition of engineered nanomaterials in aquatic environments: Role of physicochemical interactions. Environmental Science & Technology, 44, 6532–6549.

    Article  CAS  Google Scholar 

  • Phenrat, T., Cihan, A., Kim, H.-J., Mital, M., Illangasekare, T., & Lowry, G. V. (2010a). Transport and deposition of polymer-modified Fe0 Nanoparticles in 2-D heterogeneous porous media: Effects of particle concentration, Fe0 content, and coatings. Environmental Science & Technology, 44, 9086–9093.

    Article  CAS  Google Scholar 

  • Phenrat, T., Kim, H.-J., Fagerlund, F., Illangasekare, T., & Lowry, G. V. (2010b). Empirical correlations to estimate agglomerate size and deposition during injection of a polyelectrolyte-modified Fe0 nanoparticle at high particle concentration in saturated sand. Journal of Contaminant Hydrology, 118, 152–164.

    Article  CAS  Google Scholar 

  • Phenrat, T., Kim, H.-J., Fagerlund, F., Illangasekare, T., Tilton, R. D., & Lowry, G. V. (2009). Particle size distribution, concentration, and magnetic attraction affect transport of polymer-modified Fe0 nanoparticles in sand columns. Environmental Science & Technology, 43, 5079–5085.

    Article  CAS  Google Scholar 

  • Phenrat, T., Saleh, N., Sirk, K., Tilton, R. D., & Lowry, G. V. (2007). Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environmental Science & Technology, 41, 284–290.

    Article  CAS  Google Scholar 

  • Phenrat, T., Song, J. E., Cisneros, C. M., Schoenfelder, D. P., Tilton, R. D., & Lowry, G. V. (2010c). Estimating attachment of nano- and submicrometer-particles coated with organic macromolecules in porous media: development of an empirical model. Environmental Science & Technology, 44, 4531–4538.

    Article  CAS  Google Scholar 

  • Porubcan, A. A., & Xu, S. (2011). Colloid straining within saturated heterogeneous porous media. Water Research, 45, 1796–1806.

    Article  CAS  Google Scholar 

  • Praetorius, A., Scheringer, M., & Hungerbühler, K. (2012). Development of environmental fate models for engineered nanoparticles – A case study of tio2 nanoparticles in the rhine river. Environmental Science & Technology, 46, 6705–6713.

    Article  CAS  Google Scholar 

  • Prieve, D. C., & Hoysan, P. M. (1978). Role of colloidal forces in hydrodynamic chromatography. Journal of Colloid and Interface Science, 64, 201–213.

    Article  CAS  Google Scholar 

  • Qi, Z., Zhang, L., & Chen, W. (2014a). Transport of graphene oxide nanoparticles in saturated sandy soil. Environmental Science: Processes & Impacts, 16, 2268–2277.

    CAS  Google Scholar 

  • Qi, Z., Zhang, L., Wang, F., Hou, L., & Chen, W. (2014b). Factors controlling transport of graphene oxide nanoparticles in saturated sand columns. Environmental Toxicology and Chemistry, 33, 998–1004.

    Article  CAS  Google Scholar 

  • Quik, J. T. K., van De Meent, D., & Koelmans, A. A. (2014a). Simplifying modeling of nanoparticle aggregation–sedimentation behavior in environmental systems: A theoretical analysis. Water Research, 62, 193–201.

    Article  CAS  Google Scholar 

  • Quik, J. T. K., Velzeboer, I., Wouterse, M., Koelmans, A. A., & Van de Meent, D. (2014b). Heteroaggregation and sedimentation rates for nanomaterials in natural waters. Water Research, 48, 269–279.

    Article  CAS  Google Scholar 

  • Rahman, T., George, J., & Shipley, H. J. (2013). Transport of aluminum oxide nanoparticles in saturated sand: Effects of ionic strength, flow rate, and nanoparticle concentration. Science of the Total Environment, 463–464, 565–571.

    Article  CAS  Google Scholar 

  • Rahman, T., Millwater, H., & Shipley, H. J. (2014). Modeling and sensitivity analysis on the transport of aluminum oxide nanoparticles in saturated sand: Effects of ionic strength, flow rate, and nanoparticle concentration. Science of the Total Environment, 499, 402–412.

    Article  CAS  Google Scholar 

  • Rajagopalan, R., & Tien, C. (1976). Trajectory analysis of deep-bed filtration with the sphere-in-cell porous media model. AIChE Journal, 22, 523–533.

    Article  CAS  Google Scholar 

  • Raychoudhury, T., Tufenkji, N., & Ghoshal, S. (2012). Aggregation and deposition kinetics of carboxymethyl cellulose-modified zero-valent iron nanoparticles in porous media. Water Research, 46, 1735–1744.

    Article  CAS  Google Scholar 

  • Raychoudhury, T., Tufenkji, N., & Ghoshal, S. (2014). Straining of polyelectrolyte-stabilized nanoscale zero valent iron particles during transport through granular porous media. Water Research, 50, 80–90.

    Article  CAS  Google Scholar 

  • Risovic, D., & Martinis, M. (1994). The role of coagulation and sedimentation mechanisms in the two-component model of sea-particle size distribution. Fizika, 3, 103–118.

    Google Scholar 

  • Rosansky, S., Condit, W., Sirabian, R., 2013. Best practices for injection and distribution of amendments. Technical Report TR-NAVFAC-EXWC-EV.

    Google Scholar 

  • Ryan, J. N., & Elimelech, M. (1996). Colloid mobilization and transport in groundwater. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 107, 1–56.

    Article  CAS  Google Scholar 

  • Saiers, J. E., & Hornberger, G. M. (1996). Migration of 137Cs through quartz sand: Experimental results and modeling approaches. Journal of Contaminant Hydrology, 22, 255–270.

    Article  CAS  Google Scholar 

  • Saiers, J. E., Hornberger, G. M., & Liang, L. (1994). First-and second-order kinetics approaches for modeling the transport of colloidal particles in porous media. Water Resources Research, 30, 2499–2506.

    Article  CAS  Google Scholar 

  • Saleh, N., Sirk, K., Liu, Y., Phenrat, T., Dufour, B., Matyjaszewski, K., Tilton, R. D., & Lowry, G. V. (2007). Surface modifications enhance nanoiron transport and NAPL targeting in saturated porous media. Environmental Engineering Science, 24, 45–57.

    Article  CAS  Google Scholar 

  • Sasidharan, S., Torkzaban, S., Bradford, S. A., Dillon, P. J., & Cook, P. G. (2014). Coupled effects of hydrodynamic and solution chemistry on long-term nanoparticle transport and deposition in saturated porous media. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 457, 169–179.

    Article  CAS  Google Scholar 

  • Schaaf, P., & Talbot, J. (1989). Surface exclusion effects in adsorption processes. The Journal of Chemical Physics, 91, 4401–4409.

    Article  CAS  Google Scholar 

  • Scheibe, T. D., & Wood, B. D. (2003). A particle-based model of size or anion exclusion with application to microbial transport in porous media. Water Resources Research, 39, 1080.

    Article  Google Scholar 

  • Schijven, J. F., Hassanizadeh, S. M., & de Bruin, R. H. A. M. (2002). Two-site kinetic modeling of bacteriophages transport through columns of saturated dune sand. Journal of Contaminant Hydrology, 57, 259–279.

    Article  CAS  Google Scholar 

  • Schijven, J. K., & Hassanizadeh, S. M. (2000). Removal of viruses by soil passage: Overview of modeling, processes, and parameters. Critical Reviews in Environmental Science and Technology, 30, 49–127.

    Article  CAS  Google Scholar 

  • Seetha, N., Majid Hassanizadeh, S., Kumar, M., & Raoof, A. (2015). Correlation equations for average deposition rate coefficients of nanoparticles in a cylindrical pore. Water Resources Research, 51, 8034–8059.

    Article  Google Scholar 

  • Shang, J., Liu, C., & Wang, Z. (2013). Transport and retention of engineered nanoporous particles in porous media: effects of concentration and flow dynamics. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 417, 89–98.

    Article  CAS  Google Scholar 

  • Shellenberger, K., & Logan, B. E. (2002). Effect of molecular scale roughness of glass beads on colloidal and bacterial deposition. Environmental Science & Technology, 36, 184–189.

    Article  CAS  Google Scholar 

  • Shen, C., Huang, Y., Li, B., & Jin, Y. (2008). Effects of solution chemistry on straining of colloids in porous media under unfavorable conditions. Water Resources Research, 44, W05419.

    Article  Google Scholar 

  • Skopp, J. (1986). Analysis of time-dependent chemical processes in soils. Journal of Environmental Quality, 15, 205–213.

    Article  CAS  Google Scholar 

  • Smoluchowski, M. (1917). Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen. Zeitschrift fuer Physikalische Chemie, 92, 129–168.

    Google Scholar 

  • Song, L., & Elimelech, M. (1993). Dynamics of colloid deposition in porous media: modeling the role of retained particles. Colloids and Surfaces A, 73, 49–63.

    Article  CAS  Google Scholar 

  • Sun, N., Elimelech, M., Sun, N.-Z., & Ryan, J. N. (2001). A novel two-dimensional model for colloid transport in physically and geochemically heterogeneous porous media. Journal of Contaminant Hydrology, 49, 173–199.

    Article  CAS  Google Scholar 

  • Sun, P., Shijirbaatar, A., Fang, J., Owens, G., Lin, D., & Zhang, K. (2015a). Distinguishable transport behavior of zinc oxide nanoparticles in silica sand and soil columns. Science of the Total Environment, 505, 189–198.

    Article  CAS  Google Scholar 

  • Sun, Y., Gao, B., Bradford, S. A., Wu, L., Chen, H., Shi, X., & Wu, J. (2015b). Transport, retention, and size perturbation of graphene oxide in saturated porous media: Effects of input concentration and grain size. Water Research, 68, 24–33.

    Article  CAS  Google Scholar 

  • Swift, D. L., & Friedlander, S. K. (1964). The coagulation of hydrosols by Brownian motion and laminar shear flow. Journal of Colloid Science, 19, 621–647.

    Article  Google Scholar 

  • Szilagyi, I., Szabo, T., Desert, A., Trefalt, G., Oncsik, T., & Borkovec, M. (2014). Particle aggregation mechanisms in ionic liquids. Physical Chemistry Chemical Physics, 16, 9515–9524.

    Article  CAS  Google Scholar 

  • Taghavy, A., Mittelman, A., Wang, Y., Pennell, K. D., & Abriola, L. M. (2013). Mathematical modeling of the transport and dissolution of citrate-stabilized silver nanoparticles in porous media. Environmental Science & Technology, 47, 8499–8507.

    CAS  Google Scholar 

  • Taghavy, A., Pennell, K. D., & Abriola, L. M. (2014). Modeling coupled nanoparticle aggregation and transport in porous media: A Lagrangian approach. Journal of Contaminant Hydrology, 172, 48–60.

    Article  CAS  Google Scholar 

  • Taghavy, A., Pennell, K. D., & Abriola, L. M. (2015). Modeling coupled nanoparticle aggregation and transport in porous media: A Lagrangian approach. Journal of Contaminant Hydrology, 172, 48–60.

    Article  CAS  Google Scholar 

  • Tan, Y., Gannon, J. T., Baveye, P., & Alexander, M. (1994). Transport of bacteria in an aquifer sand: Experiments and model simulations. Water Resources Research, 30, 3243–3252.

    Article  Google Scholar 

  • Tang, P., & Raper, J. A. (2002). Modelling the settling behaviour of fractal aggregates–A review. Powder Technology, 123, 114–125.

    Article  CAS  Google Scholar 

  • Therezien, M., Thill, A., & Wiesner, M. R. (2014). Importance of heterogeneous aggregation for NP fate in natural and engineered systems. Science of the Total Environment, 485, 309–318.

    Article  CAS  Google Scholar 

  • Tian, Y., Gao, B., Silvera-Batista, C., & Ziegler, K. J. (2010). Transport of engineered nanoparticles in saturated porous media. Journal of Nanoparticle Research, 12, 2371–2380.

    Article  CAS  Google Scholar 

  • Tian, Y., Gao, B., Wang, Y., Morales, V. L., Carpena, R. M., Huang, Q., & Yang, L. (2012). Deposition and transport of functionalized carbon nanotubes in water-saturated sand columns. Journal of Hazardous Materials, 213, 265–272.

    Article  CAS  Google Scholar 

  • Tiraferri, A., & Sethi, R. (2009). Enhanced transport of zerovalent iron nanoparticles in saturated porous media by guar gum. Journal of Nanoparticle Research, 11, 635–645.

    Article  CAS  Google Scholar 

  • Toloni, I., Lehmann, F., & Ackerer, P. (2014). Modeling the effects of water velocity on TiO2 nanoparticles transport in saturated porous media. Journal of Contaminant Hydrology, 171, 42–48.

    Article  CAS  Google Scholar 

  • Tong, M., & Johnson, W. P. (2007). Colloid population heterogeneity drives hyperexponential deviation from classic filtration theory. Environmental Science & Technology, 41, 493–499.

    Article  CAS  Google Scholar 

  • Tong, M., Ma, H., & Johnson, W. P. (2008). Funneling of flow into grain-to-grain contacts drives colloid−colloid aggregation in the presence of an energy barrier. Environmental Science & Technology, 42, 2826–2832.

    Article  CAS  Google Scholar 

  • Torkzaban, S., & Bradford, S. A. (2016). Critical role of surface roughness on colloid retention and release in porous media. Water Research, 88, 274–284.

    Article  CAS  Google Scholar 

  • Torkzaban, S., Bradford, S. A., Vanderzalm, J. L., Patterson, B. M., Harris, B., & Prommer, H. (2015). Colloid release and clogging in porous media: Effects of solution ionic strength and flow velocity. Journal of Contaminant Hydrology, 181, 161–171.

    Article  CAS  Google Scholar 

  • Torkzaban, S., Bradford, S. A., & Walker, S. L. (2007). Resolving the coupled effects of hydrodynamics and DLVO forces on colloid attachment in porous media. Langmuir, 23, 9652–9660.

    Article  CAS  Google Scholar 

  • Torkzaban, S., Bradford, S. A., Wan, J., Tokunaga, T., & Masoudih, A. (2013). Release of quantum dot nanoparticles in porous media: Role of cation exchange and aging time. Environmental Science & Technology, 47, 11528–11536.

    Article  CAS  Google Scholar 

  • Torkzaban, S., Kim, H. N., Simunek, J., & Bradford, S. A. (2010a). Hysteresis of colloid retention and release in saturated porous media during transients in solution chemistry. Environmental Science & Technology, 44, 1662–1669.

    Article  CAS  Google Scholar 

  • Torkzaban, S., Kim, Y., Mulvihill, M., Wan, J., & Tokunaga, T. K. (2010b). Transport and deposition of functionalized CdTe nanoparticles in saturated porous media. Journal of Contaminant Hydrology, 118, 208–217.

    Article  CAS  Google Scholar 

  • Torkzaban, S., Wan, J., Tokunaga, T. K., & Bradford, S. A. (2012). Impacts of bridging complexation on the transport of surface-modified nanoparticles in saturated sand. Journal of Contaminant Hydrology, 136, 86–95.

    Article  CAS  Google Scholar 

  • Tosco, T., Gastone, F., & Sethi, R. (2014). Guar gum solutions for improved delivery of iron particles in porous media (Part 2): Iron transport tests and modeling in radial geometry. Journal of Contaminant Hydrology, 166, 34–51.

    Article  CAS  Google Scholar 

  • Tosco, T., & Sethi, R. (2010). Transport of non-Newtonian suspensions of highly concentrated micro-and nanoscale iron particles in porous media: A modeling approach. Environmental Science & Technology, 44, 9062–9068.

    Article  CAS  Google Scholar 

  • Tratnyek, P. G., & Johnson, R. L. (2006). Nanotechnologies for environmental cleanup. Nano Today, 1, 44–48.

    Article  Google Scholar 

  • Treumann, S., Torkzaban, S., Bradford, S. A., Visalakshan, R. M., & Page, D. (2014). An explanation for differences in the process of colloid adsorption in batch and column studies. Journal of Contaminant Hydrology, 164, 219–229.

    Article  CAS  Google Scholar 

  • Tufenkji, N., & Elimelech, M. (2004a). Correlation equation for predicting single-collector efficiency in physicochemical filtration in saturated porous media. Environmental Science & Technology, 38, 529–536.

    Article  CAS  Google Scholar 

  • Tufenkji, N., & Elimelech, M. (2004b). Deviation from the classical colloid filtration theory in the presence of repulsive DLVO interactions. Langmuir, 20, 10818–10828.

    Article  CAS  Google Scholar 

  • Tufenkji, N., & Elimelech, M. (2005). Spatial distributions of Cryptosporidium oocysts in porous media: Evidence for dual mode deposition. Environmental Science & Technology, 39, 3620–3629.

    Article  CAS  Google Scholar 

  • Van Genuchten, M. T., & Wierenga, P. J. (1976). Mass transfer studies in sorbing porous media I. Analytical solutions. Soil Science Society of America Journal, 40, 473–480.

    Article  Google Scholar 

  • Wang, C., Bobba, A. D., Attinti, R., Shen, C., Lazouskaya, V., Wang, L.-P., & Jin, Y. (2012a). Retention and transport of silica nanoparticles in saturated porous media: Effect of concentration and particle size. Environmental Science & Technology, 46, 7151–7158.

    Article  CAS  Google Scholar 

  • Wang, D., Bradford, S. A., Harvey, R. W., Gao, B., Cang, L., & Zhou, D. (2012b). Humic acid facilitates the transport of ARS-labeled hydroxyapatite nanoparticles in iron oxyhydroxide-coated sand. Environmental Science & Technology, 46, 2738–2745.

    Article  CAS  Google Scholar 

  • Wang, D., Bradford, S. A., Harvey, R. W., Hao, X., & Zhou, D. (2012c). Transport of ARS-labeled hydroxyapatite nanoparticles in saturated granular media is influenced by surface charge variability even in the presence of humic acid. Journal of Hazardous Materials, 229, 170–176.

    Article  CAS  Google Scholar 

  • Wang, D., Bradford, S. A., Paradelo, M., Peijnenburg, W. J. G. M., & Zhou, D. (2012d). Facilitated transport of copper with hydroxyapatite nanoparticles in saturated sand. Soil Science Society of America Journal, 76, 375–388.

    Article  CAS  Google Scholar 

  • Wang, D., Ge, L., He, J., Zhang, W., Jaisi, D. P., & Zhou, D. (2014a). Hyperexponential and nonmonotonic retention of polyvinylpyrrolidone-coated silver nanoparticles in an Ultisol. Journal of Contaminant Hydrology, 164, 35–48.

    Article  CAS  Google Scholar 

  • Wang, D., Jaisi, D. P., Yan, J., Jin, Y., & Zhou, D. (2015a). Transport and retention of polyvinylpyrrolidone-coated silver nanoparticles in natural soils. Vadose Zone Journal, 14, 2–13.

    Google Scholar 

  • Wang, D., Jin, Y., & Jaisi, D. (2015b). Cotransport of hydroxyapatite nanoparticles and hematite colloids in saturated porous media: Mechanistic insights from mathematical modeling and phosphate oxygen isotope fractionation. Journal of Contaminant Hydrology, 182, 194–209.

    Article  CAS  Google Scholar 

  • Wang, D., Jin, Y., & Jaisi, D. P. (2015c). Effect of size-selective retention on the cotransport of hydroxyapatite and goethite nanoparticles in saturated porous media. Environmental Science & Technology, 49, 8461–8470.

    Article  CAS  Google Scholar 

  • Wang, D., Paradelo, M., Bradford, S. A., Peijnenburg, W. J. G. M., Chu, L., & Zhou, D. (2011). Facilitated transport of Cu with hydroxyapatite nanoparticles in saturated sand: Effects of solution ionic strength and composition. Water Research, 45, 5905–5915.

    Article  CAS  Google Scholar 

  • Wang, D., Su, C., Liu, C., & Zhou, D. (2014b). Transport of fluorescently labeled hydroxyapatite nanoparticles in saturated granular media at environmentally relevant concentrations of surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 457, 58–66.

    Article  CAS  Google Scholar 

  • Wang, H. F., & Anderson, M. P. (1995). Introduction to groundwater modeling: Finite difference and finite element methods. New York: Academic Press.

    Google Scholar 

  • Wang, X., Cai, L., Han, P., Lin, D., Kim, H., & Tong, M. (2014c). Cotransport of multi-walled carbon nanotubes and titanium dioxide nanoparticles in saturated porous media. Environmental Pollution, 195, 31–38.

    Article  CAS  Google Scholar 

  • Wang, Y., Becker, M. D., Colvin, V. L., Abriola, L. M., & Pennell, K. D. (2014d). Influence of residual polymer on nanoparticle deposition in porous media. Environmental Science & Technology, 48, 10664–10671.

    Article  CAS  Google Scholar 

  • Wang, Y., Zhu, H., Becker, M. D., Englehart, J., Abriola, L. M., Colvin, V. L., & Pennell, K. D. (2013). Effect of surface coating composition on quantum dot mobility in porous media. Journal of Nanoparticle Research, 15, 1–16.

    CAS  Google Scholar 

  • Wang, Z., Jin, Y., Shen, C., Li, T., Huang, Y., & Li, B. (2016). Spontaneous detachment of colloids from primary energy minima by brownian diffusion. PloS one, 11, e0147368.

    Article  CAS  Google Scholar 

  • Xu, S., Gao, B., & Saiers, J. E. (2006). Straining of colloidal particles in saturated porous media. Water Resources Research, 42, W12S16.

    Article  Google Scholar 

  • Xu, S., Liao, Q., & Saiers, J. E. (2008). Straining of nonspherical colloids in saturated porous media. Environmental Science & Technology, 42, 771–778.

    Article  CAS  Google Scholar 

  • Xu, S., & Saiers, J. E. (2009). Colloid straining within water-saturated porous media: Effects of colloid size nonuniformity. Water Resources Research, 45, W05501.

    Article  Google Scholar 

  • Yao, K.-M., Habibian, M. T., & O'Melia, C. R. (1971). Water and waste water filtration. Concepts and applications. Environmental Science & Technology, 5, 1105–1112.

    Article  CAS  Google Scholar 

  • Yoon, J. S., Germaine, J. T., & Culligan, P. J. (2006). Visualization of particle behavior within a porous medium: Mechanisms for particle filtration and retardation during downward transport. Water Resources Research, 42, 1–16.

    Article  CAS  Google Scholar 

  • Yu, H., Fu, J., Dang, L., Cheong, Y., Tan, H., & Wei, H. (2015a). Prediction of the particle size distribution parameters in a high shear granulation process using a key parameter definition combined artificial neural network model. Industrial & Engineering Chemistry Research, 54, 10825–10834.

    Article  CAS  Google Scholar 

  • Yu, H., He, Y., Li, P., Li, S., Zhang, T., Rodriguez-Pin, E., Du, S., Wang, C., Cheng, S., & Bielawski, C. W. (2015b). Flow enhancement of water-based nanoparticle dispersion through microscale sedimentary rocks. Scientific Reports, 5, 8702.

    Article  CAS  Google Scholar 

  • Zhang, L., Hou, L., Wang, L., Kan, A. T., Chen, W., & Tomson, M. B. (2012). Transport of fullerene nanoparticles (n C60) in saturated sand and sandy soil: Controlling factors and modeling. Environmental Science & Technology, 46, 7230–7238.

    Article  CAS  Google Scholar 

  • Zhang, P., Johnson, W. P., Piana, M. J., Fuller, C. C., & Naftz, D. L. (2001a). Potential artifacts in interpretation of differential breakthrough of colloids and dissolved tracers in the context of transport in a zero-valent iron permeable reactive barrier. Groundwater, 39, 831–840.

    Article  CAS  Google Scholar 

  • Zhang, P., Johnson, W. P., Scheibe, T. D., Choi, K. H., Dobbs, F. C., & Mailloux, B. J. (2001b). Extended tailing of bacteria following breakthrough at the Narrow Channel Focus Area, Oyster, Virginia. Water Resources Research, 37, 2687–2698.

    Article  Google Scholar 

  • Zhang, W., Jianzhi, N., Morales, V. L., Chen, X., Hay, A. G., Lehmann, J., & Steenhuis, T. S. (2010). Transport and retention of biochar particles in porous media: Effect of pH, ionic strength, and particle size. Ecohydrology, 3, 497–508.

    Article  CAS  Google Scholar 

  • Zheng, C., & Wang, P. (1999a). MT3DMS, A modular three-dimensional multi-species transport model for simulation of advection, dispersion and chemical reactions of contaminants in groundwater systems; documentation and user’s guide. U.S. Army Corpes Engineers, Engineer Research and Development Center, Contract Report SERDP-99-1, Vicksburg, MS, 202.

    Google Scholar 

  • Zheng, C., & Wang, P. P. (1999b). A modular three-dimensional multi-species transport model for simulation of advection, dispersion and chemical reactions of contaminants in groundwater systems; documentation and user’s guide. US Army Engineer Research and Development Center Contract Report SERDP-99-1, Vicksburg, Mississippi, USA.

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by (1) the Thailand Research Fund (TRF) MRG5680129; (2) the National Nanotechnology Center (Thailand), a member of the National Science and Technology Development Agency, through grant number P-11-00989; (3) the National Research Council (R2556B070); and (4) Taiwan’s Ministry of Science and Technology (MOST) under grant no. 104-2221-E-009-020-MY3.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Phenrat, T., Babakhani, P., Bridge, J., Doong, Ra., Lowry, G.V. (2019). Mechanistic, Mechanistic-Based Empirical, and Continuum-Based Concepts and Models for the Transport of Polyelectrolyte-Modified Nanoscale Zerovalent Iron (NZVI) in Saturated Porous Media. In: Phenrat, T., Lowry, G. (eds) Nanoscale Zerovalent Iron Particles for Environmental Restoration. Springer, Cham. https://doi.org/10.1007/978-3-319-95340-3_6

Download citation

Publish with us

Policies and ethics