Skip to main content

Carbothermal Synthesis of Aerosol-Based Iron-Carbon Nanocomposites for Adsorption and Reduction of Cr(VI)

  • Chapter
  • First Online:
Nanoscale Zerovalent Iron Particles for Environmental Restoration

Abstract

Spherical iron-carbon nanocomposites were synthesized through a facile aerosol-based process and a subsequent carbothermal reduction. Carbothermal treatment reduces iron species to zero-valent iron rather than using expensive sodium borohydride. In addition, the high porosity of iron-carbon composites allows the entry of contaminants to reactive sites. These composites with nanoscale zero-valent iron particles incorporated in the carbon matrix exhibit synergistic adsorption and reaction for more efficient removal of Cr(VI) in water. Under identical experimental conditions, aerosol-assisted iron-carbon composites showed the highest removal efficiency compared to other materials including nanoscale zero-valent iron particles, aerosol-assisted carbon, and their physical mixture. Meanwhile, X-ray photoelectron spectroscopy analysis proved as-prepared iron-carbon composites could effectively transform Cr(VI) to much less toxic Cr(III). These iron-carbon composites can be designed at low cost, the process is amenable to scale-up for in situ application, and the materials are intrinsically benign to the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-abed, S. R., & Chen, J. (2001). Transport of trichloroethylene (TCE) in natural soil by electroosmosis. In: Smith, J. A. & Burns, S. E. (eds.), Physicochemical groundwater remediation (pp. 91–114). New York: Springer.

    Google Scholar 

  • Cao, J., & Zhang, W. (2006). Stabilization of chromium ore processing residue (COPR) with nanoscale iron particles. Journal of Hazardous Materials, 132(2–3), 213–219.

    Article  CAS  Google Scholar 

  • Choi, H., Al-Abed, S. R., Agarwal, S., & Dionysiou, D. D. (2008). Synthesis of reactive Nano-Fe/Pd bimetallic system-impregnated activated carbon for the simultaneous adsorption and dechlorination of PCBs. Chemistry of Materials, 20, 3649–3655.

    Article  CAS  Google Scholar 

  • Choi, H., Agarwal, S., & Al-Abed, S. R. (2009). Adsorption and simultaneous dechlorination of PCBs on GAC/Fe/Pd: mechanistic aspects and reactive capping barrier concept. Environmental Science & Technology, 43, 488–493.

    Article  CAS  Google Scholar 

  • Gatmiri, B., & Hosseini, A. H. (2004). Conceptual model and mathematical formulation of NAPL transport in unsaturated porous media. In: Thomas, H. R. & Young, R. N. (eds.), Geoenvironmental engineering: Integrated management of groundwater and contaminated land (pp. 67–75). London, UK: Thomas Telford Publishing.

    Chapter  Google Scholar 

  • He, F., & Zhao, D. (2005). Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water. Environmental Science & Technology, 39, 3314–3320.

    Article  CAS  Google Scholar 

  • He, F., & Zhao, D. (2007). Manipulating the size and dispersibility of zerovalent iron nanoparticles by use of carboxymethyl cellulose stabilizers. Environmental Science & Technology, 41, 6216–6221.

    Article  CAS  Google Scholar 

  • He, F., Zhao, D., Liu, J., & Roberts, C. B. (2007). Stabilization of Fe−Pd nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater. Industrial & Engineering Chemistry Research, 46, 29–34.

    Article  CAS  Google Scholar 

  • Hoch, L. B., Mack, E. J., Hydutsky, B. W., Hershman, J. M., Skluzacek, J. M., & Mallouk, T. E. (2008). Carbothermal synthesis of carbon-supported nanoscale zero-valent iron particles for the remediation of hexavalent chromium. Environmental Science & Technology, 47, 2600–2605.

    Article  Google Scholar 

  • Huang, P., Ye, Z., Xie, W., Chen, Q., Li, J., Xu, Z., & Yao, M. (2013). Rapid magnetic removal of aqueous heavy metals and their relevant mechanisms using nanoscale zero valent iron (nZVI). Water Research, 47, 4050–4058.

    Article  CAS  Google Scholar 

  • Krishnani, K., & Ayyappan, S. (2006). Heavy metals remediation of water using plants and lignocellulosic agrowastes. In: Ware, G. W., Whitacre, D. M., Albert, L. A., de Voogt, P., Gerba, C. P., Hutzinger, O., Knaak, J. B., Mayer, F. L., Morgan, D. P., Park, D. L., Tjeerdema, R. S., Yang, R. S. H., Gunther, F. A. (eds.), Reviews of environmental contamination and toxicology (Vol. 188, pp. 59–84).

    Chapter  Google Scholar 

  • Li, X., Cao, J., & Zhang, W. (2008). Stoichiometry of Cr(VI) immobilization using nanoscale zerovalent iron (nZVI): A study with high-resolution X-ray photoelectron spectroscopy (HR-XPS). Industrial & Engineering Chemistry Research, 47, 2131–2139.

    Article  CAS  Google Scholar 

  • Liu, Y., Choi, H., Dionysiou, D., & Lowry, G. V. (2005a). Trichloroethene hydrodechlorination in water by highly disordered monometallic nanoiron. Chemistry of Materials, 17, 5315–5322.

    Article  CAS  Google Scholar 

  • Liu, Y., Majetich, S. A., Tilton, R. D., Sholl, D. S., & Lowry, G. V. (2005b). TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environmental Science & Technology, 39, 1338–1345.

    Article  CAS  Google Scholar 

  • Liu, Z., Fan, T., Zhang, W., & Zhang, D. (2005c). The synthesis of hierarchical porous iron oxide with wood templates. Microporous and Mesoporous Materials, 85, 82–88.

    Article  CAS  Google Scholar 

  • Lv, X., Xu, J., Jiang, G., & Xu, X. (2011). Removal of chromium(VI) from wastewater by nanoscale zero-valent iron particles supported on multiwalled carbon nanotubes. Chemosphere, 85, 1204–1209.

    Article  CAS  Google Scholar 

  • Miretzky, P., & Cirelli, A. F. (2010). Cr(VI) and Cr(III) removal from aqueous solution by raw and modified lignocellulosic materials: A review. Journal of Hazardous Materials, 180, 1–19.

    Article  CAS  Google Scholar 

  • Nyer, E. K., & Vance, D. B. (2001). Nano-scale iron for dehalogenation. Groundwater Monitoring & Remediation, 21, 41–46.

    Article  CAS  Google Scholar 

  • Owlad, M., Aroua, M. K., Daud, W. A. W., & Baroutian, S. (2009). Removal of hexavalent chromium-contaminated water and wastewater: A review. Water, Air, and Soil Pollution, 200, 59–77.

    Article  CAS  Google Scholar 

  • Phenrat, T., Saleh, N., Sirk, K., Tilton, R. D., & Lowry, G. V. (2007). Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environmental Science & Technology, 41, 284–290.

    Article  CAS  Google Scholar 

  • Phenrat, T., Liu, Y., Tilton, R. D., & Lowry, G. V. (2009). Adsorbed polyelectrolyte coatings decrease Fe0 nanoparticle reactivity with TCE in water: Conceptual model and mechanisms. Environmental Science & Technology, 43, 1507–1514.

    Article  CAS  Google Scholar 

  • Saleh, N., Phenrat, T., Sirk, K., Dufour, B., Ok, J., Sarbu, T., Matyjaszewski, K., Tilton, R. D., & Lowry, G. V. (2005). Adsorbed triblock copolymers deliver reactive iron nanoparticles to the oil/water interface. Nano Letters, 5, 2489–2494.

    Article  CAS  Google Scholar 

  • Schrick, B., Hydutsky, B. W., Blough, J. L., & Mallouk, T. E. (2004). Delivery vehicles for zerovalent metal nanoparticles in soil and groundwater. Chemistry of Materials, 16, 2187–2193.

    Article  CAS  Google Scholar 

  • Seaton, N. A. (1991). Determination of the connectivity of porous solids from nitrogen sorption measurements. Chemical Engineering Science, 46, 1895–1909.

    Article  CAS  Google Scholar 

  • Sing, K. S. W. (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (recommendations 1984). Pure and Applied Chemistry, 57, 603–619.

    Article  CAS  Google Scholar 

  • Sunkara, B., Zhan, J., He, J., McPherson, G. L., Piringer, G., & John, V. T. (2010). Nanoscale zerovalent iron supported on uniform carbon microspheres for the in situ remediation of chlorinated hydrocarbons. ACS Applied Materials & Interfaces, 2, 2854–2862.

    Article  CAS  Google Scholar 

  • Tang, L., Yang, G., Zeng, G., Cai, Y., Li, S., Zhou, Y., Pang, Y., Liu, Y., Zhang, Y., & Luna, B. (2014). Synergistic effect of iron doped ordered mesoporous carbon on adsorption-coupled reduction of hexavalent chromium and the relative mechanism study. Chemical Engineering Journal, 239, 114–122.

    Article  CAS  Google Scholar 

  • Tiraferri, A., Chen, K., Sethi, R., & Elimelech, M. (2008). Reduced aggregation and sedimentation of zero-valent iron nanoparticles in the presence of guar gum. Journal of Colloid and Interface Science, 324, 71–79.

    Article  CAS  Google Scholar 

  • Uegami M., Kawano J., Okita T., Fujii Y., Okinaka K., Kayuka K., & Yatagi S. (2006). Iron particles for purifying contaminated soil or groundwater. US Patent 7,022,256, Apr. 4, 2006.

    Google Scholar 

  • Wang, C., & Zhang, W. (1997). Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environmental Science & Technology, 31, 2154–2156.

    Article  CAS  Google Scholar 

  • Xie, Y., & Cwiertny, D. M. (2012). Influence of anionic cosolutes and pH on nanoscale zerovalent iron longevity: Time scales and mechanisms of reactivity loss toward 1,1,1,2-tetrachloroethane and Cr(VI). Environmental Science & Technology, 46, 8365–8373.

    Article  CAS  Google Scholar 

  • Zhan, J., Zheng, T., Piringer, G., Day, C., McPherson, G. L., Lu, Y., Papadopoulos, K., & John, V. T. (2008). Transport characteristics of nanoscale functional zerovalent iron/silica composites for in situ remediation of trichloroethylene. Environmental Science & Technology, 42, 8871–8876.

    Article  CAS  Google Scholar 

  • Zhan, J., Sunkara, B., Le, L., John, V. T., He, J., McPherson, G. L., Piringer, G., & Lu, Y. (2009). Multifunctional colloidal particles for in situ remediation of chlorinated hydrocarbons. Environmental Science & Technology, 43, 8616–8621.

    Article  CAS  Google Scholar 

  • Zhan, J., Kolesnichenko, I., Sunkara, B., He, J., McPherson, G. L., Piringer, G., & John, V. T. (2011). Multifunctional iron−carbon nanocomposites through an aerosol-based process for the in situ remediation of chlorinated hydrocarbons. Environmental Science & Technology, 45(5), 1949–1954.

    Article  CAS  Google Scholar 

  • Zhang, W. (2003). Nanoscale iron particles for environmental remediation: An overview. Journal of Nanoparticle Research, 5, 323–332.

    Article  CAS  Google Scholar 

  • Zheng, T., Zhan, J., He, J., Day, C., Lu, Y., McPherson, G. L., Piringer, G., & John, V. T. (2008). Reactivity characteristics of nanoscale zerovalent iron−silica composites for trichloroethylene remediation. Environmental Science & Technology, 42, 4494–4499.

    Article  CAS  Google Scholar 

  • Zhou, X,. Lv, B., Zhou, Z., Li, W., & Jing, G. (2015). Evaluation of highly active nanoscale zero-valent iron coupled with ultrasound for chromium(VI) removal. Chemical Engineering Journal, 281, 155–163.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank Dr. Yanqiang Huang at Dalian Institute of Chemical Physics for his assistance with the XPS analysis. Funding from the Fundamental Research Funds for the Central Universities is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingjing Zhan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

He, J., Ai, L., Wang, Y., Long, Y., Wei, C., Zhan, J. (2019). Carbothermal Synthesis of Aerosol-Based Iron-Carbon Nanocomposites for Adsorption and Reduction of Cr(VI). In: Phenrat, T., Lowry, G. (eds) Nanoscale Zerovalent Iron Particles for Environmental Restoration. Springer, Cham. https://doi.org/10.1007/978-3-319-95340-3_14

Download citation

Publish with us

Policies and ethics