Skip to main content

Optogenetic Tools in the Microscopy of Cardiac Excitation-Contraction Coupling

  • Chapter
  • First Online:
Microscopy of the Heart

Abstract

Microscopy became a scientific investigation method in the seventeenth century with the application of the first build microscopes on biological samples [1, 2]. Soon it became a popular method to stain samples in order to visualise particular (cellular and subcellular) structures [3]. These stains, either based on absorption or fluorescence, have limitations in respect to their specificity and are often toxic to cells, which limits investigations to short intervals or even dead samples. In 1987 the idea came up to use a fluorescent protein that was discovered 25 years before [4], in particular a green fluorescent protein (GFP) form the medusa Aequorea victoria to label cells and cellular structures [5]. With the sequencing and cloning of GFP, a so-called ‘green revolution’ started, which led to regular usage of fluorescent proteins as markers or sensors (for details see below) in the majority of cellular research in physiology, microbiology, pharmacology, molecular biology, anatomy, cell biology, biophysics and many other biomedical fields. Although the expression of the fluorescent proteins and their optical investigation can already be regarded as optogenetic tools, this term was only applied when the optical properties of proteins were used to manipulate cells. The best-known example of such a protein is the channelrhodopsin, a light-gated ion channel [6, 7]. When this ion channel is expressed in a membrane and illuminated with light of the appropriate wavelength, the channel will be activated and opened, which results in passive transportation of ions across the membrane and a change of the membrane potential. However, within this chapter we consider both aspects, the observation and the manipulation as optogenetic tools. To use the optogenetic tool, the genes of these proteins need to be transferred into the cells to allow the expression of the protein. For an overview of gene delivery into target cells, see [8].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Swammerdam J. Bybel der natuur. London: C. G. Seyffert; 1737.

    Google Scholar 

  2. Scientists, A. C. O. D. The collected letters of Antoni Van Leeuwenhoek. Boca Raton, FL: CRC Press; 1996.

    Google Scholar 

  3. Milestones in light microscopy. Nat Cell Biol. 2009;11:1165.

    Google Scholar 

  4. Shimomura O, Johnson FH, Saiga Y. Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan. Aequorea J Cell Compar Physiol. 1962;59:223–39.

    CAS  Google Scholar 

  5. Zimmer M. Glowing genes: a revolution in biotechnology. New York, NY: Prometheus Books; 2005.

    Google Scholar 

  6. Nagel G, et al. Channelrhodopsin-1: a light-gated proton channel in green algae. Science. 2002;296:2395–8.

    CAS  PubMed  Google Scholar 

  7. Nagel G, et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci U S A. 2003;100:13940–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Kaestner L, Scholz A, Lipp P. Conceptual and technical aspects of transfection and gene delivery. Bioorg Med Chem Lett. 2015;25:1171–6.

    CAS  PubMed  Google Scholar 

  9. Hu CD, Chinenov Y, Kerppola TK. Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. Mol Cell. 2002;9:789–98.

    CAS  PubMed  Google Scholar 

  10. Wang Q, Shui B, Kotlikoff MI, Sondermann H. Structural basis for calcium sensing by GCaMP2. Structure. 2008;16:1817–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Tsien RY. The green fluorescent protein. Annu Rev Biochem. 1998;67:509–44.

    CAS  PubMed  Google Scholar 

  12. Coutinho V, Mutoh H, Knöpfel T. Functional topology of the mossy fibre-granule cell--Purkinje cell system revealed by imaging of intrinsic fluorescence in mouse cerebellum. Eur J Neurosci. 2004;20:740–8.

    CAS  PubMed  Google Scholar 

  13. Díez-García J, Akemann W, Knöpfel T. In vivo calcium imaging from genetically specified target cells in mouse cerebellum. Neuroimage. 2007;34:859–69.

    PubMed  Google Scholar 

  14. Kaestner L, et al. Genetically encoded Ca2+ indicators in cardiac myocytes. Circ Res. 2014;114:1623–39.

    CAS  PubMed  Google Scholar 

  15. Förster T. Intermolecular energy migration and fluorescence. Ann Phys. 1948;437:55–75.

    Google Scholar 

  16. Tsien RY, Bacskai BJ, Adams SR. FRET for studying intracellular signalling. Trends Cell Biol. 1993;3:242–5.

    CAS  PubMed  Google Scholar 

  17. Heim R, Tsien RY. Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr Biol. 1996;6:178–82.

    CAS  PubMed  Google Scholar 

  18. Youvan DC. Calibration of fluorescence resonance energy transfer in microscopy using genetically engineered GFP derivatives on nickel chelating beads. Biotechnol Alia. 2006;3:1–18. https://doi.org/10.1234/12345678.

    Article  Google Scholar 

  19. Berney C, Danuser G. FRET or no FRET: a quantitative comparison. Biophys J. 2003;84:3992–4010.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Gordon GW, Berry G, Liang XH, Levine B, Herman B. Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy. Biophys J. 1998;74:2702–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Xia Z, Liu Y. Reliable and global measurement of fluorescence resonance energy transfer using fluorescence microscopes. Biophys J. 2001;81:2395–402.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Hoppe A, Christensen K, Swanson JA. Fluorescence resonance energy transfer-based stoichiometry in living cells. Biophys J. 2002;83:3652–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Lakowicz JR. Principles of fluorescence spectroscopy. New York, NY: Springer Science & Business Media; 2013.

    Google Scholar 

  24. Wlodarczyk J, et al. Analysis of FRET signals in the presence of free donors and acceptors. Biophys J. 2008;94:986–1000.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Thaler C, Koushik SV, Blank PS, Vogel SS. Quantitative multiphoton spectral imaging and its use for measuring resonance energy transfer. Biophys J. 2005;89:2736–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Bers DM. Cardiac excitation-contraction coupling. Nature. 2002;415:198–205.

    CAS  PubMed  Google Scholar 

  27. Viero C, Kraushaar U, Ruppenthal S, Kaestner L, Lipp P. A primary culture system for sustained expression of a calcium sensor in preserved adult rat ventricular myocytes. Cell Calcium. 2008;43:59–71.

    CAS  PubMed  Google Scholar 

  28. Kaestner L. et al. Isolation and genetic manipulation of adult cardiac myocytes for confocal imaging. J Vis Exp. 2009; (31).

    Google Scholar 

  29. Tian Q, et al. Functional and morphological preservation of adult ventricular myocytes in culture by sub-micromolar cytochalasin D supplement. J Mol Cell Cardiol. 2012;52:113–24.

    CAS  PubMed  Google Scholar 

  30. Pahlavan S, et al. Gαq and Gα11 contribute to the maintenance of cellular electrophysiology and Ca2+ handling in ventricular cardiomyocytes. Cardiovasc Res. 2012;95:48–58.

    CAS  PubMed  Google Scholar 

  31. Kang M, Walker J. Protein kinase C delta and epsilon mediate positive inotropy in adult ventricular myocytes. J Mol Cell Cardiol. 2005;38:753–64.

    CAS  PubMed  Google Scholar 

  32. Chen T-W, et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature. 2013;499:295–300.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Dana H, et al. Sensitive red protein calcium indicators for imaging neural activity. Elife. 2016;5:413.

    Google Scholar 

  34. Romoser VA, Hinkle PM, Persechini A. Detection in living cells of Ca2+-dependent changes in the fluorescence emission of an indicator composed of two green fluorescent protein variants linked by a calmodulin-binding sequence. J Biol Chem. 1997;272:13270–4.

    CAS  PubMed  Google Scholar 

  35. Miyawaki A, et al. Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature. 1997;388:882–7.

    CAS  PubMed  Google Scholar 

  36. Cox JA. Calcium-calmodulin interaction and cellular function. J Cardiovasc Pharmacol. 1986;8(Suppl 8):S48–51.

    PubMed  Google Scholar 

  37. Garaschuk O, Griesbeck O, Konnerth A. Troponin C-based biosensors: a new family of genetically encoded indicators for in vivo calcium imaging in the nervous system. Cell Calcium. 2007;42:351–61.

    CAS  PubMed  Google Scholar 

  38. Palmer AE, Jin C, Reed JC, Tsien RY. Bcl-2-mediated alterations in endoplasmic reticulum Ca2+ analyzed with an improved genetically encoded fluorescent sensor. Proc Natl Acad Sci U S A. 2004;101:17404–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Palmer AE, et al. Ca2+ indicators based on computationally redesigned calmodulin-peptide pairs. Chem Biol. 2006;13:521–30.

    CAS  PubMed  Google Scholar 

  40. Mank M, et al. A FRET-based calcium biosensor with fast signal kinetics and high fluorescence change. Biophys J. 2006;90:1790–6.

    CAS  PubMed  Google Scholar 

  41. Heim N, Griesbeck O. Genetically encoded indicators of cellular calcium dynamics based on troponin C and green fluorescent protein. J Biol Chem. 2004;279:14280–6.

    CAS  PubMed  Google Scholar 

  42. Kaestner L, et al. Genetically encoded voltage indicators in circulation research. Int J Mol Sci. 2015;16:21626–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Siegel MS, Isacoff EY. A genetically encoded optical probe of membrane voltage. Neuron. 1997;19:735–41.

    CAS  PubMed  Google Scholar 

  44. Sakai R, Repunte-Canonigo V, Raj CD, Knöpfel T. Design and characterization of a DNA-encoded, voltage-sensitive fluorescent protein. Eur J Neurosci. 2001;13:2314–8.

    CAS  PubMed  Google Scholar 

  45. Knöpfel T, Tomita K, Shimazaki R, Sakai R. Optical recordings of membrane potential using genetically targeted voltage-sensitive fluorescent proteins. Methods. 2003;30:42–8.

    PubMed  Google Scholar 

  46. Ataka K, Pieribone VA. A genetically targetable fluorescent probe of channel gating with rapid kinetics. Biophys J. 2002;82:509–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Baker BJ, et al. Three fluorescent protein voltage sensors exhibit low plasma membrane expression in mammalian cells. J Neurosci Methods. 2007;161:32–8.

    CAS  PubMed  Google Scholar 

  48. Murata Y, Iwasaki H, Sasaki M, Inaba K, Okamura Y. Phosphoinositide phosphatase activity coupled to an intrinsic voltage sensor. Nature. 2005;435:1239–43.

    CAS  PubMed  Google Scholar 

  49. Ramsey IS, Moran MM, Chong JA, Clapham DE. A voltage-gated proton-selective channel lacking the pore domain. Nature. 2006;440:1213–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Dimitrov D, et al. Engineering and characterization of an enhanced fluorescent protein voltage sensor. PLoS One. 2007;2:e440.

    PubMed  PubMed Central  Google Scholar 

  51. Tsutsui H, Karasawa S, Okamura Y, Miyawaki A. Improving membrane voltage measurements using FRET with new fluorescent proteins. Nat Methods. 2008;5:683–5.

    CAS  PubMed  Google Scholar 

  52. Mutoh H, et al. Spectrally-resolved response properties of the three most advanced FRET based fluorescent protein voltage probes. PLoS One. 2009;4:e4555.

    PubMed  PubMed Central  Google Scholar 

  53. Lam AJ, et al. Improving FRET dynamic range with bright green and red fluorescent proteins. Nat Methods. 2012;9:1005–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Chang Liao M-L, et al. Sensing cardiac electrical activity with a cardiac myocyte--targeted optogenetic voltage indicator. Circ Res. 2015;117:401–12.

    CAS  PubMed  Google Scholar 

  55. Tsutsui H, Higashijima S-I, Miyawaki A, Okamura Y. Visualizing voltage dynamics in zebrafish heart. J Physiol (Lond). 2010;588:2017–21.

    CAS  Google Scholar 

  56. Tallini YN, et al. Imaging cellular signals in the heart in vivo: cardiac expression of the high-signal Ca2+ indicator GCaMP2. Proc Natl Acad Sci U S A. 2006;103:4753–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Tian Q, et al. Optical action potential screening on adult ventricular myocytes as an alternative QT-screen. Cell Physiol Biochem. 2011;27:281–90.

    CAS  PubMed  Google Scholar 

  58. Villalba-Galea CA, et al. Charge movement of a voltage-sensitive fluorescent protein. Biophys J. 2009;96:L19–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Lundby A, Mutoh H, Dimitrov D, Akemann W, Knöpfel T. Engineering of a genetically encodable fluorescent voltage sensor exploiting fast Ci-VSP voltage-sensing movements. PLoS One. 2008;3:e2514.

    PubMed  PubMed Central  Google Scholar 

  60. Baker BJ, et al. Genetically encoded fluorescent voltage sensors using the voltage-sensing domain of Nematostella and Danio phosphatases exhibit fast kinetics. J Neurosci Methods. 2012;208:190–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Jin L, et al. Single action potentials and subthreshold electrical events imaged in neurons with a fluorescent protein voltage probe. Neuron. 2012;75:779–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Miesenbock G, De Angelis DA, Rothman JE. Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature. 1998;394:192–5.

    CAS  PubMed  Google Scholar 

  63. Hochbaum DR, et al. All-optical electrophysiology in mammalian neurons using engineered microbial rhodopsins. Nat Methods. 2014;11:825–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. St-Pierre F, et al. High-fidelity optical reporting of neuronal electrical activity with an ultrafast fluorescent voltage sensor. Nat Neurosci. 2014;17:884–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Zou P, et al. Bright and fast multicoloured voltage reporters via electrochromic FRET. Nat Commun. 2014;5:4625.

    CAS  PubMed  Google Scholar 

  66. Kralj JM, Hochbaum DR, Douglass AD, Cohen AE. Electrical spiking in Escherichia coli probed with a fluorescent voltage-indicating protein. Science. 2011;333:345–8.

    CAS  PubMed  Google Scholar 

  67. Kralj JM, Douglass AD, Hochbaum DR, Maclaurin D, Cohen AE. Optical recording of action potentials in mammalian neurons using a microbial rhodopsin. Nat Methods. 2012;9:90–5.

    CAS  Google Scholar 

  68. Ernst OP, et al. Photoactivation of channelrhodopsin. J Biol Chem. 2008;283:1637–43.

    CAS  PubMed  Google Scholar 

  69. Hou JH, Kralj JM, Douglass AD, Engert F, Cohen AE. Simultaneous mapping of membrane voltage and calcium in zebrafish heart in vivo reveals chamber-specific developmental transitions in ionic currents. Front Physiol. 2014;5:344.

    PubMed  PubMed Central  Google Scholar 

  70. Gong Y, Wagner MJ, Zhong Li J, Schnitzer MJ. Imaging neural spiking in brain tissue using FRET-opsin protein voltage sensors. Nat Commun. 2014;5:3674.

    PubMed  Google Scholar 

  71. Kuhn B, Fromherz P, Denk W. High sensitivity of stark-shift voltage-sensing dyes by one- or two-photon excitation near the red spectral edge. Biophys J. 2004;87:631–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Bublitz G, King B, Boxer S. Electronic structure of the chromophore in green fluorescent protein. J Am Chem Soc. 1998;120:9370.

    CAS  Google Scholar 

  73. Rosell FI, Boxer SG. Polarized absorption spectra of green fluorescent protein single crystals: transition dipole moment directions. Biochemistry. 2003;42:177–83.

    CAS  PubMed  Google Scholar 

  74. Khatchatouriants A, Lewis A, Rothman Z, Loew L, Treinin M. GFP is a selective non-linear optical sensor of electrophysiological processes in Caenorhabditis elegans. Biophys J. 2000;79:2345–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Kaestner L, Tian Q, Lipp P. In: Jung G, editor. Action potentials in heart cells. New York, NY: Springer; 2012. p. 163–82.

    Google Scholar 

  76. Entcheva E. Cardiac optogenetics. AJP Heart Circ Physiol. 2013;304:H1179–91.

    CAS  Google Scholar 

  77. Bruegmann T, et al. Optogenetic control of heart muscle in vitro and in vivo. Nat Methods. 2010;7:897–900.

    CAS  PubMed  Google Scholar 

  78. Vogt CC, et al. Systemic gene transfer enables optogenetic pacing of mouse hearts. Cardiovasc Res. 2015;106:338–43.

    CAS  PubMed  Google Scholar 

  79. Ambrosi CM, Klimas A, Yu J, Entcheva E. Cardiac applications of optogenetics. Prog Biophys Mol Biol. 2014;115:294–304.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Scheller A, Bai X, Kirchhoff F. The role of the oligodendrocyte lineage in acute brain trauma. Neurochem Res. 2017; https://doi.org/10.1007/s11064-017-2343-4.

    CAS  PubMed  Google Scholar 

  81. Wiesen K, et al. Cardiac remodeling in Gαq and Gα11 knock out mice. Int J Cardiol. 2016;202:836–45.

    PubMed  Google Scholar 

  82. Prigge M, et al. Color-tuned channelrhodopsins for multiwavelength optogenetics. J Biol Chem. 2012;287:31804–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Dempsey GT, et al. Cardiotoxicity screening with simultaneous optogenetic pacing, voltage imaging and calcium imaging. J Pharmacol Toxicol Methods. 2016;81:240. https://doi.org/10.1016/j.vascn.2016.05.003.

    Article  CAS  PubMed  Google Scholar 

  84. Shang W, et al. Imaging Ca2+ nanosparks in heart with a new targeted biosensor. Circ Res. 2014;114(3):412. https://doi.org/10.1161/CIRCRESAHA.114.302938.

    Article  CAS  PubMed  Google Scholar 

  85. Tian Q, et al. Optical measurement of action potential in adult ventricular myocytes. Biophys J. 2011;100:292a.

    Google Scholar 

  86. Haugland RP. Handbook of fluorescent probes and research products. Eugene, OR: Molecular Probes; 2002.

    Google Scholar 

  87. Kaestner L, Tian Q, Lipp P. Cardiac safety screens: molecular, cellular, and optical advancements. In: Lin CP, Ntziachistos V, editors. Biomedical optics III, vol. 8089. Munich: SPIE; 2011. p. 80890H-1–6.

    Google Scholar 

  88. Arrigoni C, Crivori P. Assessment of QT liabilities in drug development. Cell Biol Toxicol. 2007;23:1–13.

    CAS  PubMed  Google Scholar 

  89. Sinnecker D, et al. Induced pluripotent stem cells in cardiovascular research. Rev Physiol Biochem Pharmacol. 2012;163:1. https://doi.org/10.1007/112_2012_6.

    Article  PubMed  Google Scholar 

  90. Matsa E, Burridge PW, Wu JC. Human stem cells for modeling heart disease and for drug discovery. Sci Transl Med. 2014;6:239ps6.

    PubMed  PubMed Central  Google Scholar 

  91. Dorn T, et al. Direct Nkx2-5 transcriptional repression of Isl1 controls cardiomyocyte subtype identity. Stem Cells. 2015;33:1113. https://doi.org/10.1002/stem.1923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Leyton-Mange JS, et al. Rapid cellular phenotyping of human pluripotent stem cell-derived cardiomyocytes using a genetically encoded fluorescent voltage sensor. Stem Cell Rep. 2014;2:163–70.

    CAS  Google Scholar 

  93. Nagai T, Sawano A, Park ES, Miyawaki A. Circularly permuted green fluorescent proteins engineered to sense Ca2. Proc Natl Acad Sci U S A. 2001;98:3197–202.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Chen Z, et al. Subtype-specific promoter-driven action potential imaging for precise disease modelling and drug testing in hiPSC-derived cardiomyocytes. Eur Heart J. 2017;38:292–301.

    CAS  PubMed  Google Scholar 

  95. Tian Q, Kaestner L, Lipp P. Noise-free visualization of microscopic calcium signaling by pixel-wise fitting. Circ Res. 2012;111:17–27.

    CAS  PubMed  Google Scholar 

  96. Tian Q, Kaestner L, Schröder L, Guo J, Lipp P. An adaptation of astronomical image processing enables characterization and functional 3D mapping of individual sites of excitation-contraction coupling in rat cardiac muscle. Elife. 2017;6:665.

    Google Scholar 

  97. Violin JD, Zhang JX, Tsien RY, Newton AC. A genetically encoded fluorescent reporter reveals oscillatory phosphorylation by protein kinase C. J Cell Biol. 2003;161:899–909.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Schleifenbaum A, Stier G, Gasch A, Sattler M, Schultz C. Genetically encoded FRET probe for PKC activity based on pleckstrin. J Am Chem Soc. 2004;126:11786–7.

    CAS  PubMed  Google Scholar 

  99. Knöpfel T, Gallero-Salas Y, Song C. Genetically encoded voltage indicators for large scale cortical imaging come of age. Curr Opin Chem Biol. 2015;27:75–83.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaestner, L., Zeug, A., Tian, Q. (2018). Optogenetic Tools in the Microscopy of Cardiac Excitation-Contraction Coupling. In: Kaestner, L., Lipp, P. (eds) Microscopy of the Heart. Springer, Cham. https://doi.org/10.1007/978-3-319-95304-5_5

Download citation

Publish with us

Policies and ethics