Skip to main content

Training for Bus Bodywork in Virtual Reality Environments

  • Conference paper
  • First Online:
Augmented Reality, Virtual Reality, and Computer Graphics (AVR 2018)

Abstract

This document presents a virtual training system oriented for learning of electric welding applied to automotive body assembly industry. The training tasks are developed in a virtual immersion environment created with Unity 3D graphic software, in order to improve the user’s skills and welding skills through a teaching-learning process that allows the virtual manipulation of industrial instruments. In this way, the experience in welding task is obtained, risks of industrial accidents are reduced and waste is eliminated. The experimental results show the behavior of the system and the evolution of the user’s skills.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Turner, C.J., Hutabarat, W., Oyekan, J., Tiwari, A.: Discrete event simulation and virtual reality use in industry: new opportunities and future trends. IEEE Trans. Hum. Mach. Syst. 46, 1–13 (2016)

    Article  Google Scholar 

  2. Buttussi, F., Chittaro, L.: Effects of different types of virtual reality display on presence and learning in a safety training scenario. IEEE Trans. Vis. Comput. Graph. 1–14 (2016)

    Google Scholar 

  3. Pais, F., Patrao, B., Menezes, P.: Virtual reality as a training tool for human interactions. In: 4th Experiment@ International Conference, vol. 4, pp. 119–120, June 2017

    Google Scholar 

  4. Wang, R., Yao, J., Wang, L., Liu, X., Wang, H., Zheng, L.: A surgical training system for four medical punctures based on virtual reality and haptic feedback. In: IEEE Symposium on 3D User Interfaces (3DUI), L.A., pp. 215–216, March 2017

    Google Scholar 

  5. Mourning, R., Tang, Y.: Virtual reality social training for adolescents with high-functioning autism. In: IEEE International Conference on Systems, Man, and Cybernetics Budapest, Hungary, pp. 4848–4853 (2016)

    Google Scholar 

  6. Hament, B., Cater, A., Oh, P.Y.: Coupling virtual reality and motion platforms for snowboard training. In: 14th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), Korea, pp. 556–560, July 2017

    Google Scholar 

  7. Makarova, I., Khabibullin, R., Belyaev, E., Bogateeva, A.: The application of virtual reality technologies in engineering education for the automotive industry. In: IEEE International Conference on Interactive Collaborative Learning, Italy, pp. 536–544 (2015)

    Google Scholar 

  8. Cigert, J., Sbaouni, M., Segot, C.: Virtual reality training of manual procedures in the nuclear sector. In: IEEE Virtual Reality Conference, France, pp. 381–382, March 2015

    Google Scholar 

  9. Cordeiro, C., Paludo, J., Tanaka, E., Dominguez, L., Gadbem, E., Euflausino, A.: Desenvolvimento de Ambiente de Realidade Virtual Imersivo para Treinamento de Eletricistas Habilitados em Subestações. In: IEEE XVII Symposium on Virtual and Augmented Reality, pp. 142–146 (2015)

    Google Scholar 

  10. White, S., Prachyabrued, M., Baghi, D., Aglawe, A., Reiners, D., Borst, C., Chambers, T.: Virtual welder trainer. In: IEEE Virtual Reality, USA, March 2009

    Google Scholar 

  11. Benkai, X., Quiang, Z., Liang, Y.: A real-time welding training system based on Virtual Reality. In: 2015 IEEE Virtual Reality (VR), pp. 309–310 (2015)

    Google Scholar 

  12. Andaluz, V.H., et al.: Immersive industrial process environment from a P&ID diagram. In: Bebis, G., et al. (eds.) Advances in Visual Computing, ISVC 2016. LNCS, vol. 10072, pp. 701–712. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50835-1_63

    Google Scholar 

  13. Khastgir, S., Birrell, S., Dhadyalla, G., Jennings, P.: Development of a drive-in driver-in-the-loop fully immersive driving simulator for virtual validation of automotive systems. In: IEEE 81st Vehicular Technology Conference, pp. 1–4 (2015)

    Google Scholar 

  14. Quevedo, W.X., Sánchez, J.S., Arteaga, O., ÁV, M., Zambrano, V.D., Sánchez, C.R., Andaluz, V.H.: Virtual reality system for training in automotive mechanics. In: De Paolis, L.T., Bourdot, P., Mongelli, A. (eds.) AVR 2017, Part I. LNCS, vol. 10324, pp. 185–198. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60922-5_14

    Chapter  Google Scholar 

  15. Wu, X., Fei, G.: Research of virtual reality technology in automotive engine assembly teaching. In: 6th IEEE Joint International Information Technology and Artificial Intelligence Conference, vol. 1, pp. 167–169 (2011)

    Google Scholar 

  16. Freschi, F., Giaccone, L., Mitolo, M.: Arc welding processes: an electrical safety analysis. IEEE Trans. Ind. Appl. 53(2), 819–825 (2017)

    Article  Google Scholar 

  17. Manual de Electrodos para Soldar, 2nd edn. INFRA, pp. 4–5 (2009)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thanks to the Corporación Ecuatoriana para el Desarrollo de la Investigación y Academia–CEDIA for the financing given to research, development, and innovation, through the CEPRA projects, especially the project CEPRA-XI-2017-06; Control Coordinado Multi-operador aplicado a un robot Manipulador Aéreo; also to Universidad de las Fuerzas Armadas ESPE, Universidad Técnica de Ambato, Escuela Superior Politécnica de Chimborazo, and Universidad Nacional de Chimborazo, and Grupo de Investigación en Automatización, Robótica y Sistemas Inteligentes, GIARSI, for the support to develop this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Danny F. Herrera , S. Bolívar Acosta , Washington X. Quevedo , Jhon A. Balseca or Víctor H. Andaluz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Herrera, D.F., Bolívar Acosta, S., Quevedo, W.X., Balseca, J.A., Andaluz, V.H. (2018). Training for Bus Bodywork in Virtual Reality Environments. In: De Paolis, L., Bourdot, P. (eds) Augmented Reality, Virtual Reality, and Computer Graphics. AVR 2018. Lecture Notes in Computer Science(), vol 10850. Springer, Cham. https://doi.org/10.1007/978-3-319-95270-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95270-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95269-7

  • Online ISBN: 978-3-319-95270-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics