Skip to main content

Predictive and Prognostic Biomarkers in Myeloid Neoplasms

  • Chapter
  • First Online:
Predictive Biomarkers in Oncology
  • 2638 Accesses

Abstract

The major categories of myeloid neoplasms include myeloproliferative neoplasms (MPN), myelodysplastic syndromes (MDS), myelodysplastic/myeloproliferative neoplasms (MDS/MPN, acute myeloid leukemia (AML), mastocytosis, blastic plasmacytoid dendritic cell neoplasms, and myeloid/lymphoid neoplasms with eosinophilia. MPNs are stem cell disorders characterized by proliferation of cells of one or more of the myeloid lineages (granulocytic, erythroid, and megakaryocytic) and a tendency to transform to acute myeloid leukemia. Dysregulation of JAK2 signaling by direct or indirect mechanisms has emerged as the central theme in classic MPNs leading to the use of JAK2 inhibitors for therapy. MDS are clonal hematopoietic neoplasms characterized by simultaneous proliferation and apoptosis of hematopoietic cells that results in a normocellular or hypercellular marrow with peripheral blood cytopenias and a tendency to evolve into acute myeloid leukemia. Sequential acquisition of somatic mutations in a set of genes involved in hematopoiesis leads to dysregulation of cellular processes leading to asymptomatic clonal hematopoiesis and later to MDS. MDS/MPNs include clonal myeloid neoplasms, which at the time of initial presentation are associated with features that support the diagnosis of MDS and other findings more consistent with an MPN. AML results from the clonal expansion of myeloid blasts in the peripheral blood, bone marrow, or tissues. Mutations in the epigenetic pathway including genes such as DNMT3A, ASXL1, TET2, and IDH1/IDH2 are acquired early in the disease process. Mutations involving the signal transduction pathway or NPM1 are typically secondary events that occur later during the evolution of the disease. Inhibitors of FLT3 and IDH1 and IDH2 are currently used for targeted therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Levine RL, Pardanani A, Tefferi A, et al. Role of JAK2 in the pathogenesis and therapy of myeloproliferative disorders. Nat Rev Cancer. 2007;7(9):673–83.

    Article  CAS  PubMed  Google Scholar 

  2. Kennedy JA, Ebert BL. Clinical implications of genetic mutations in myelodysplastic syndrome. J Clin Oncol. 2017;35(9):968–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Baxter EJ, et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet. 2005;365(9464):1054–61.

    Article  CAS  PubMed  Google Scholar 

  4. James C, et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature. 2005;434(7037):1144–8.

    Article  CAS  PubMed  Google Scholar 

  5. Kralovics R, et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med. 2005;352(17):1779–90.

    Article  CAS  PubMed  Google Scholar 

  6. Defour JP, et al. Oncogenic activation of MPL/thrombopoietin receptor by 17 mutations at W515: implications for myeloproliferative neoplasms. Leukemia. 2016;30(5):1214–6.

    Article  CAS  PubMed  Google Scholar 

  7. Papaemmanuil E, et al. Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood. 2013;122(22):3616–27; quiz 3699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yoshida K, et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature. 2011;478(7367):64–9.

    Article  CAS  PubMed  Google Scholar 

  9. Delhommeau F, et al. Mutation in TET2 in myeloid cancers. N Engl J Med. 2009;360(22):2289–301.

    Article  PubMed  Google Scholar 

  10. Losman JA, et al. (R)-2-hydroxyglutarate is sufficient to promote leukemogenesis and its effects are reversible. Science. 2013;339(6127):1621–5.

    Article  CAS  PubMed  Google Scholar 

  11. Haferlach T, et al. Landscape of genetic lesions in 944 patients with myelodysplastic syndromes. Leukemia. 2014;28(2):241–7.

    Article  CAS  PubMed  Google Scholar 

  12. West AH, Godley LA, Churpek JE. Familial myelodysplastic syndrome/acute leukemia syndromes: a review and utility for translational investigations. Ann N Y Acad Sci. 2014;1310:111–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ok CY, et al. TP53 mutation characteristics in therapy-related myelodysplastic syndromes and acute myeloid leukemia is similar to de novo diseases. J Hematol Oncol. 2015;8:45.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Aldoss I, et al. Favorable impact of allogeneic stem cell transplantation in patients with therapy-related myelodysplasia regardless of TP53 mutational status. Haematologica. 2017;102(12):2030–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Christiansen DH, Andersen MK, Pedersen-Bjergaard J. Mutations with loss of heterozygosity of p53 are common in therapy-related myelodysplasia and acute myeloid leukemia after exposure to alkylating agents and significantly associated with deletion or loss of 5q, a complex karyotype, and a poor prognosis. J Clin Oncol. 2001;19(5):1405–13.

    Article  CAS  PubMed  Google Scholar 

  16. Busque L, et al. Recurrent somatic TET2 mutations in normal elderly individuals with clonal hematopoiesis. Nat Genet. 2012;44(11):1179–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Link DC, Walter MJ. ‘CHIP’ping away at clonal hematopoiesis. Leukemia. 2016;30(8):1633–5.

    Article  CAS  PubMed  Google Scholar 

  18. Bejar R. CHIP, ICUS, CCUS and other four-letter words. Leukemia. 2017;31(9):1869–71.

    Article  CAS  PubMed  Google Scholar 

  19. Steensma DP, et al. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood. 2015;126(1):9–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cancer Genome Atlas Research, N, et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013;368(22):2059–74.

    Article  CAS  Google Scholar 

  21. Patel JP, et al. Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. N Engl J Med. 2012;366(12):1079–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dufour A, et al. Acute myeloid leukemia with biallelic CEBPA gene mutations and normal karyotype represents a distinct genetic entity associated with a favorable clinical outcome. J Clin Oncol. 2010;28(4):570–7.

    Article  CAS  PubMed  Google Scholar 

  23. Thiede C, et al. Prevalence and prognostic impact of NPM1 mutations in 1485 adult patients with acute myeloid leukemia (AML). Blood. 2006;107(10):4011–20.

    Article  CAS  PubMed  Google Scholar 

  24. Tang JL, et al. AML1/RUNX1 mutations in 470 adult patients with de novo acute myeloid leukemia: prognostic implication and interaction with other gene alterations. Blood. 2009;114(26):5352–61.

    Article  CAS  PubMed  Google Scholar 

  25. Renneville A, et al. Wilms tumor 1 gene mutations are associated with a higher risk of recurrence in young adults with acute myeloid leukemia: a study from the Acute Leukemia French Association. Cancer. 2009;115(16):3719–27.

    Article  CAS  PubMed  Google Scholar 

  26. Gaidzik VI, et al. TET2 mutations in acute myeloid leukemia (AML): results from a comprehensive genetic and clinical analysis of the AML study group. J Clin Oncol. 2012;30(12):1350–7.

    Article  CAS  PubMed  Google Scholar 

  27. Paschka P, et al. ASXL1 mutations in younger adult patients with acute myeloid leukemia: a study by the German-Austrian Acute Myeloid Leukemia Study Group. Haematologica. 2015;100(3):324–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Boissel N, et al. Prognostic impact of isocitrate dehydrogenase enzyme isoforms 1 and 2 mutations in acute myeloid leukemia: a study by the Acute Leukemia French Association group. J Clin Oncol. 2010;28(23):3717–23.

    Article  CAS  PubMed  Google Scholar 

  29. Bowen D, et al. TP53 gene mutation is frequent in patients with acute myeloid leukemia and complex karyotype, and is associated with very poor prognosis. Leukemia. 2009;23(1):203–6.

    Article  CAS  PubMed  Google Scholar 

  30. Papaemmanuil E, et al. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med. 2016;374(23):2209–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dohner H, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017;129(4):424–47.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Stein EM, Tallman MS. Emerging therapeutic drugs for AML. Blood. 2016;127(1):71–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raju K. Pillai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pillai, R.K. (2019). Predictive and Prognostic Biomarkers in Myeloid Neoplasms. In: Badve, S., Kumar, G. (eds) Predictive Biomarkers in Oncology. Springer, Cham. https://doi.org/10.1007/978-3-319-95228-4_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95228-4_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95227-7

  • Online ISBN: 978-3-319-95228-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics