Skip to main content

Real Time and Mapping Spectroscopic Ellipsometry of Hydrogenated Amorphous and Nanocrystalline Si Solar Cells

  • Chapter
  • First Online:
Spectroscopic Ellipsometry for Photovoltaics

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 214))

Abstract

Real time spectroscopic ellipsometry (SE) has been applied to characterize the structural evolution and optical properties of the critical p-type doped and intrinsic hydrogenated silicon (Si:H) layers that comprise the nanocrystalline Si:H bottom cell of tandem photovoltaic (PV) devices. The tandem PV devices under study are fabricated in the amorphous/nanocrystalline Si:H (a-Si:H/nc-Si:H) p-i-n superstrate configuration in which the nc-Si:H cell is at the bottom of the device structure due to its narrower bandgap relative to that of the top cell a-Si:H. SE data collected in real time during Si:H solar cell fabrication by plasma enhanced chemical vapor deposition (PECVD) enable identification of Si crystallite development in the bottom cell p and i-layers through the evolution of surface roughness , as well as through variations in the optical properties in the form of the complex dielectric function \( (\varepsilon = \varepsilon_{1} - {\text{i}}\varepsilon_{2} ) \). Analysis of the dielectric function permits quantification of the relative amounts of the a-Si-H and nc-Si-H components that exist during the growth of mixed-phase Si:H layers. Based on these real time SE analysis results, a PECVD growth evolution diagram has been developed for the bottom cell i-layer of the tandem PV cell in order to guide fabrication in this device configuration. Correlations between the p and i-layer structures and device performance are evident and can be understood on the basis of the growth evolution diagram. A second growth evolution diagram has been developed to characterize PECVD of n-type Si-H thin films for use as the n-layer component of p-i-n a-Si:H top cells in the same superstrate configuration. This growth evolution diagram has been established to provide guidance for PECVD of the n-layers over the 15 cm × 15 cm areas of glass/TCO/p/i superstrates, where TCO represents the transparent conducting oxide layer serving as the topmost contact. The goal of this study is to correlate the structural characteristics provided by the diagram with the performance parameters of single-junction a-Si:H solar cells that can serve as the top cell of the tandem device. A 16 × 16 array of p-i-n dot cells has been fabricated over the 15 cm × 15 cm area of the TCO coated glass superstrate, and this same area has been studied by mapping SE. Analysis of the SE data collected over the full area provides maps of the p-layer effective thickness , i-layer thickness and bandgap , and n-layer thickness and nanocrystalline volume fraction for spatial correlation with the performance parameters from current density-voltage (J-V) measurements of the 16 × 16 array of dot cells. The goal of the correlations that exploit mapping SE is to identify and understand the relationships between the variations in the basic materials properties and in the thin film solar cell performance over large areas. The results also enable analysis of the impacts of spatial non-uniformities on PV module performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E.A. Schiff, S. Hegedus, X. Deng, in Handbook of Photovoltaic Science and Engineering, 2nd edn., ed. by A. Luque, S. Hegedus (Wiley, New York, NY, 2011), Chapter 12, p. 487

    Google Scholar 

  2. A. Shah (ed.), Thin Film Silicon Solar Cells (CRC, Boca Raton, FL, 2010)

    Google Scholar 

  3. J. Meier, S. Dubail, R. Platz, P. Torres, U. Kroll, J.A. Anna Selvan, N. Pellaton Vaucher, C. Hof, D. Fischer, H. Keppner, R. Fluckiger, A. Shah, V. Shklover, K.D. Ufert, Solar Energy Mater. Solar Cells 78, 35 (1997)

    Article  Google Scholar 

  4. A. Shah, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz, U. Graf, Solar Energy Mater. Solar Cells 78, 469 (2003)

    Article  Google Scholar 

  5. X. Cao, J.A. Stoke, J. Li, N.J. Podraza, W. Du, X. Yang, D. Attygalle, X. Liao, R.W. Collins, X. Deng, J. Non-Cryst. Solids 354, 2397 (2008)

    Article  ADS  Google Scholar 

  6. B. Yan, G. Yue, L. Sivec, J. Yang, S. Guha, C.-S. Jiang, Appl. Phys. Lett. 99, 113512 (2011)

    Article  ADS  Google Scholar 

  7. T. Matsui, H. Sai, K. Saito, M. Kondo, Prog. Photovolt.: Res. Appl. 21, 1363 (2013)

    Article  Google Scholar 

  8. H. Sai, T. Matsui, K. Matsubara, M. Kondo, I. Yoshida, IEEE J. Photovolt. 4, 1349 (2014)

    Article  Google Scholar 

  9. M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, D.H. Levi, A.W.Y. Ho-Baillie, Prog. Photovolt.: Res. Appl. 25, 3 (2017)

    Google Scholar 

  10. O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. Muck, B. Rech, H. Wagner, Solar Energy Mater. Solar Cells 62, 97 (2000)

    Article  Google Scholar 

  11. R.W. Collins, A.S. Ferlauto, G.M. Ferreira, C. Chen, J. Koh, R.J. Koval, Y. Lee, J.M. Pearce, C.R. Wronski, Solar Energy Mater. Solar Cells 78, 143 (2003)

    Article  Google Scholar 

  12. L.R. Dahal, J. Li, J.A. Stoke, Z. Huang, A. Shan, A.S. Ferlauto, C.R. Wronski, R.W. Collins, N.J. Podraza, Solar Energy Mater. Solar Cells 129, 32 (2014)

    Article  Google Scholar 

  13. H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (Wiley, Chichester, UK, 2007)

    Book  Google Scholar 

  14. Z. Huang, L.R. Dahal, M.M. Junda, P. Aryal, S. Marsillac, R.W. Collins, N.J. Podraza, IEEE J. Photovolt. 5, 1516 (2015)

    Article  Google Scholar 

  15. Z. Huang, in Spectroscopic Ellipsometry Studies of Thin Film a-Si:H/nc-Si:H Micromorph Solar Cell Fabrication in the p-i-n Superstrate Configuration. Ph.D. Dissertation (University of Toledo, Toledo, OH, 2016)

    Google Scholar 

  16. Z. Huang, L.R. Dahal, C. Salupo, A.S. Ferlauto, N.J. Podraza, R.W. Collins, in Conference Record of the 39th IEEE Photovoltaics Specialists Conference, Tampa, FL, 16–21 June 2013 (IEEE, New York, 2013), p. 1788

    Google Scholar 

  17. J. Koh, Y.W. Lu, S. Kim, J.S. Burnham, C.R. Wronski, R.W. Collins, Appl. Phys. Lett. 67, 2669 (1995)

    Article  ADS  Google Scholar 

  18. I. An, Y.M. Li, H.V. Nguyen, C.R. Wronski, R.W. Collins, Appl. Phys. Lett. 59, 2543 (1991)

    Article  ADS  Google Scholar 

  19. B. Johs, J.S. Hale, Phys. Stat. Solidi (a) 205, 715 (2008)

    Article  ADS  Google Scholar 

  20. R.W. Collins, A.S. Ferlauto, in Handbook of Ellipsometry, ed. by H.G. Tompkins, E.A. Irene (William Andrew, Norwich, NY, 2005), Chapter 2, p. 93

    Google Scholar 

  21. M.M. Junda, A. Shan, P. Koirala, R.W. Collins, N.J. Podraza, IEEE J. Photovolt. 5, 307 (2015)

    Article  Google Scholar 

  22. A.S. Ferlauto, G.M. Ferreira, R.J. Koval, J.M. Pearce, C.R. Wronski, R.W. Collins, M.M. Al-Jassim, K.M. Jones, Thin Solid Films 455–456, 665 (2004)

    Article  Google Scholar 

  23. J.A. Stoke, L.R. Dahal, J. Li, N.J. Podraza, X. Cao, X. Deng, R.W. Collins, in Conference Record of the 33rd IEEE Photovoltaics Specialist Conference, San Diego, CA, 11–16 May 2008 (IEEE, New York, 2008), Paper 413

    Google Scholar 

  24. D.E. Aspnes, J. Opt. Soc. Am. A 10, 974 (1993)

    Article  ADS  Google Scholar 

  25. S. Kim, R.W. Collins, Appl. Phys. Lett. 67, 3010 (1995)

    Article  ADS  Google Scholar 

  26. A.S. Ferlauto, G.M. Ferreira, J.M. Pearce, C.R. Wronski, R.W. Collins, X. Deng, G. Ganguly, J. Appl. Phys. 92, 2424 (2002)

    Article  ADS  Google Scholar 

  27. T. Yuguchi, Y. Kanie, N. Matsuki, H. Fujiwara, J. Appl. Phys. 111, 083509 (2012)

    Article  ADS  Google Scholar 

  28. K. von Rottkay, M. Rubin, Materials Research Society Symposium Proceedings: Thin Films for Photovoltaic and Related Devices, vol. 426 (MRS, Warrendale, PA, 1996), p. 449

    Google Scholar 

  29. J. Chen, J. Li, D. Sainju, K.D. Wells, N.J. Podraza, R.W. Collins, in Conference Record of the IEEE 4th World Conference on Photovoltaic Energy Conversion 2006, Waikoloa, HI, 7–12 May 2006 (IEEE, New York, NY, 2006), p. 475

    Google Scholar 

  30. N.J. Podraza, C.R. Wronski, M.W. Horn, R.W. Collins, Materials Research Society Symposium Proceedings: Amorphous and Polycrystalline Thin-Film Silicon Science and Technology—2006, vol. 910 (MRS, Warrendale, PA, 2006), p. 259

    Google Scholar 

  31. H.V. Nguyen, R.W. Collins, Phys. Rev. B 47, 1911 (1993)

    Article  ADS  Google Scholar 

  32. P. Etchegoin, J. Kircher, M. Cardona, Phys. Rev. B 47, 10292 (1993)

    Article  ADS  Google Scholar 

  33. P. Lautenschlager, M. Garriga, L. Viña, M. Cardona, Phys. Rev. B 36, 4821 (1987)

    Article  ADS  Google Scholar 

  34. Z. Huang, J. Chen, M.N. Sestak, D. Attygalle, L.R. Dahal, M.R. Mapes, D.A. Strickler, K.R. Kormanyos, C. Salupo, R.W. Collins, in Conference Record of the 35th IEEE Photovoltaic Specialists Conference, Honolulu, HI, 20–25 June 2010 (IEEE, New York, NY, 2010), p. 1678

    Google Scholar 

  35. J. Chen, P. Koirala, C. Salupo, R.W. Collins, S. Marsillac, K.R. Kormanyos, B.D. Johs, J.S. Hale, G.L. Pfeiffer, in Conference Record of the 38th IEEE Photovoltaic Specialists Conference, Austin, TX, 3–8 June 2012 (IEEE, New York, NY, 2012), p. 377

    Google Scholar 

  36. R.W. Collins, B.Y. Yang, J. Vac. Sci. Technol. B 7, 1155 (1989)

    Article  Google Scholar 

  37. Y.A. Kryukov, N.J. Podraza, R.W. Collins, J. Amar, Phys. Rev. B 80, 085403 (2009)

    Article  ADS  Google Scholar 

  38. C.W. Teplin, C.-S. Jiang, P. Stradins, H.M. Branz, Appl. Phys. Lett. 92, 093114 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolas J. Podraza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Huang, Z., Dahal, L.R., Marsillac, S., Podraza, N.J., Collins, R.W. (2018). Real Time and Mapping Spectroscopic Ellipsometry of Hydrogenated Amorphous and Nanocrystalline Si Solar Cells. In: Fujiwara, H., Collins, R. (eds) Spectroscopic Ellipsometry for Photovoltaics. Springer Series in Optical Sciences, vol 214. Springer, Cham. https://doi.org/10.1007/978-3-319-95138-6_7

Download citation

Publish with us

Policies and ethics