Skip to main content
  • 1637 Accesses

Abstract

Hemorrhage is considered the most preventable cause of in-hospital deaths worldwide, especially in the acute exsanguinating trauma setting. All the substantial bleeding patients in acute scenarios such as trauma, major surgery, gastrointestinal (GI) tract hemorrhage, aortic aneurysmal rupture, and postpartum hemorrhage (PPH) represent a major challenge of the daily practical activity of anesthesiologists and intensivists, both with surgeons and/or interventional radiologists, facing possible life-threatening blood loss, coagulation derangements, metabolic disorders, and finally, complex profound microcirculation and tissue disorders. The management of bleeding in these patients involves outstanding clinical aspects, requiring a pathophysiological and, possibly, a clinicopathological approach. Acidemia, hypothermia, and low calcium levels all play a pivotal role in persistent coagulopathy in massively bleeding patients. Less than prior fluid administration seeks to minimize overloads resulting in tissue edema and organ failure, dilutional coagulopathy, and coagulation interferences including the “popping the clot” effect, endothelial damage with resulting glycocalyx shedding with effects on increased permeability and interstitial edema, and activation of both inflammatory and coagulation systems with very similar consequences like those observed in sepsis state. Rapid identification of patients who are actively bleeding and need early activation and treatment adopting a massive transfusion protocol in the first hours represents the main objectives of the entire working team. To restore physiology and homeostasis, in parallel with hemostatic control as soon as possible, represents the primary care project of all the involved specialists managing a critical bleeding patient within a first-line position and partnership like blood bankers, beyond trauma surgeons and the other specialists always at work in the emergency department, in order to ameliorate the trauma team as well and to manage such a precious resource as blood and blood components.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cothren CC, Moore EE, Hedegaard HB, et al. Epidemiology of urban trauma deaths: a comprehensive reassessment 10 years later. World J Surg. 2007;31(7):1507–11.

    PubMed  Google Scholar 

  2. Murray CJ, Lopez AD. Mortality by cause for eight regions of the world: Global Burden of Disease Study. Lancet. 1997;349:1269–76.

    CAS  PubMed  Google Scholar 

  3. Hargestam M, Hultin M, Brulin C, et al. Trauma team leaders’ non-verbal communication: video registration during trauma team training. Scand J Trauma Resusc Emerg Med. 2016;24:37–49.

    PubMed Central  PubMed  Google Scholar 

  4. Leenstra NF, Jung OC, Johnson A, et al. Taxonomy of trauma leadership skills: a framework for leadership training and assessment. Acad Med. 2016;91:272–81.

    PubMed  Google Scholar 

  5. Shapiro MB, Jenkins DH, Schwab CW, et al. Damage control: collective review. J Trauma. 2000;49(5):969–78.

    CAS  PubMed  Google Scholar 

  6. Bogert JN, Harvin JA, Cotton BA. Damage control resuscitation. J Intensive Care Med. 2016;31(3):177–86.

    PubMed  Google Scholar 

  7. Simmons RL, Collins JA, Heisterkamp CA, et al. Coagulation disorders in combat casualties I. Acute changes after wounding. II. Effects of massive transfusion. 3. Post-resuscitative changes. Ann Surg. 1969;169(4):455–82.

    CAS  PubMed Central  PubMed  Google Scholar 

  8. McLaughlin DF, Niles SE, Salinas J, et al. A predictive model for massive transfusion in combat casualty patients. J Trauma. 2008;64(2 Suppl):S57–63.

    PubMed  Google Scholar 

  9. Levy JH, Faraoni D, Sniecinski RM. Perioperative coagulation management in the intensive care unit. Curr Opin Anesthesiol. 2013;26:65–70.

    CAS  Google Scholar 

  10. Kozek-Langenecker SA. Coagulation and transfusion in the postoperative bleeding patient. Curr Opin Crit Care. 2014;20:460–6.

    PubMed  Google Scholar 

  11. Nascimento B, Callum J, Tien H, et al. Effect of a fixed-ratio (1:1:1) transfusion protocol versus laboratory-results-guided transfusion in patients with severe trauma: a randomized feasibility trial. CMAJ. 2013;185(12):583–9.

    Google Scholar 

  12. Tapia NM, Chang A, Norman M, et al. TEG-guided resuscitation is superior to standardized MTP resuscitation in massively transfused penetrating trauma patients. J Trauma Acute Care Surg. 2013;74(2):378–85.

    CAS  PubMed  Google Scholar 

  13. Ho AM, Holcomb JB, Ng CS, et al. The traditional vs “1:1:1” approach debate on massive transfusion in trauma should not be treated as a dichotomy. Am J Emerg Med. 2015;33(10):1501–4.

    PubMed  Google Scholar 

  14. Schultz W, McConachie I. Vital signs after haemorrhage—caution is appropriate. Trends Anaesth Crit Care. 2015;5:89–92.

    Google Scholar 

  15. Shen T, Baker K. Venous return and clinical hemodynamics: how the body works during acute hemorrhage. Adv Physiol Educ. 2015;39:267–71.

    PubMed  Google Scholar 

  16. Kalla M, Herring N. Physiology of shock and volume resuscitation. Surgery. 2013;31(11):545–51.

    Google Scholar 

  17. Rady MY, Kirkman E, Cranley J, et al. Nociceptive somatic nerve stimulation and skeletal muscle injury modify hemodynamics and oxygen transport and utilization after resuscitation from haemorrhage. Crit Care Med. 1996;24(4):623–30.

    CAS  PubMed  Google Scholar 

  18. Jacobsen J, Secher NH. Heart rate during haemorrhagic shock. Clin Physiol. 1992;12(6):659–66.

    CAS  PubMed  Google Scholar 

  19. Kirkman E, Watts S. Haemodynamic changes in trauma. Br J Anaesth. 2014;113(2):266–75.

    CAS  PubMed  Google Scholar 

  20. Tachon G, Harrois A, Tanaka S, et al. Microcirculatory alterations in traumatic hemorrhagic shock. Crit Care Med. 2014;42:1433–41.

    PubMed  Google Scholar 

  21. Dubin A, Pozo MO, Ferrara G, et al. Systemic and microcirculatory responses to progressive hemorrhage. Intensive Care Med. 2009;35:556–64.

    PubMed  Google Scholar 

  22. Libert N, Harrois A, Duranteau J. Haemodynamic coherence in haemorrhagic shock. Best Pract Res Clin Anaesthesiol. 2016;30:429–35.

    PubMed  Google Scholar 

  23. Cohen MJ, Brohi K, Calfee CS, et al. Early release of high mobility group box nuclear protein 1 after severe trauma in humans: role of injury severity and tissue hypoperfusion. Crit Care. 2009;13:R174.

    PubMed Central  PubMed  Google Scholar 

  24. Manson J, Thiemermann C, Brohi K. Trauma alarmins as activators of damage-induced inflammation. Br J Surg. 2012;99(S1):12–20.

    CAS  PubMed  Google Scholar 

  25. Bianchi ME. DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukoc Biol. 2007;81:1–5.

    CAS  PubMed  Google Scholar 

  26. Chang R, Holcomb JB. Optimal fluid therapy for traumatic hemorrhagic shock. Crit Care Clin. 2017;33:15–36.

    PubMed Central  PubMed  Google Scholar 

  27. Myburgh JA, Mythen MG. Resuscitation fluids. N Engl J Med. 2013;369:1243–51.

    CAS  PubMed  Google Scholar 

  28. Chappell D, Jacob M. Role of the glycocalyx in fluid management: small things matter. Best Pract Res Clin Anaesthesiol. 2014;28:227–34.

    PubMed  Google Scholar 

  29. Advanced Trauma Life Support (ATLS) for doctors. Chicago: American College of Surgeons Committee on Trauma; 2012. http://www.facs.org/trauma/atls/index.html.

  30. Shafi S, Collinsworth AW, Richter KM, et al. Bundles of care for resuscitation from hemorrhagic shock and severe brain injury in trauma patients—translating knowledge into practice. J Trauma Acute Care Surg. 2016;81(4):780–94.

    PubMed  Google Scholar 

  31. Stephens CT, Gumbert S, Holcomb JB. Trauma-associated bleeding: management of massive transfusion. Curr Opin Anesthesiol. 2016;29:250–5.

    CAS  Google Scholar 

  32. White NJ, Ward KR, Pati S, et al. Hemorrhagic blood failure: oxygen debt, coagulopathy, and endothelial damage. J Trauma Acute Care Surg. 2017;82(6S Suppl 1):S41–9.

    PubMed Central  PubMed  Google Scholar 

  33. Emerson CP, Ebert RV. A study of shock in battle casualties: measurements of the blood volume changes occurring in response to therapy. Ann Surg. 1945;122(5):745–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Kozar RA, Peng Z, Zhang R, et al. Plasma restoration of endothelial glycocalyx in a rodent model of hemorrhagic shock. Anesth Analg. 2011;112(6):1289–95.

    PubMed Central  PubMed  Google Scholar 

  35. Pati S, Wataha K, Menge T, et al. Spray-dried plasma and fresh frozen plasma modulate permeability and inflammation in vitro in vascular endothelial cells. Transfusion. 2013;53(Suppl 1):80S–90S.

    PubMed  Google Scholar 

  36. Johnson JL, Moore EE, Kashuk JL, et al. Effect of blood products transfusion on the development of postinjury multiple organ failure. Arch Surg. 2010;145(10):973–7.

    PubMed  Google Scholar 

  37. Moore HB, Moore EE, Chapman MP, et al. Viscoelastic measurements of platelet function, not fibrinogen function, predicts sensitivity to tissue-type plasminogen activator in trauma patients. J Thromb Haemost. 2015;13(10):1878–87.

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Fries D, Martini WZ. Role of fibrinogen in trauma-induced coagulopathy. Br J Anaesth. 2010;105(2):116–21.

    CAS  PubMed  Google Scholar 

  39. Morrison JJ, Ross JD, Dubose JJ, et al. Association of cryoprecipitate and tranexamic acid with improved survival following wartime injury: findings from the MATTERs II Study. JAMA Surg. 2013;148(3):218–25.

    CAS  PubMed  Google Scholar 

  40. Curry N, Rourke C, Davenport R, et al. Early cryoprecipitate for major haemorrhage in trauma: a randomised controlled feasibility trial. Br J Anaesth. 2015;115(1):76–83.

    CAS  PubMed  Google Scholar 

  41. Rourke C, Curry N, Khan S, et al. Fibrinogen levels during trauma hemorrhage, response to replacement therapy, and association with patient outcomes. J Thromb Haemost. 2012;10(7):1342–51.

    CAS  PubMed  Google Scholar 

  42. Nunez TC, Young PP, Holcomb JB. Creation, implementation, and maturation of a massive transfusion protocol for the exsanguinating trauma patient. J Trauma. 2010;68:1498–505.

    PubMed Central  PubMed  Google Scholar 

  43. Shaz BH, Dante CJ, Harris FIS, et al. Transfusion management of trauma patients. Anesth Analg. 2009;108:1760–8.

    PubMed Central  PubMed  Google Scholar 

  44. Johansson PI, Stensballe J, Rosenberg I, et al. Proactive administration of platelets and plasma for patients with a ruptured abdominal aortic aneurysm: evaluating a change in transfusion practice. Transfusion. 2007;47(4):593–8.

    PubMed  Google Scholar 

  45. Rossaint R, Bouillon B, Cerny V, et al. The European guideline on management of major bleeding and coagulopathy following trauma: fourth edition. Crit Care. 2016;20(1):100.

    PubMed Central  PubMed  Google Scholar 

  46. Holcomb JB, del Junco DJ, Fox EE, et al. The prospective, observational, multi-center, major trauma transfusion (PROMMTT) study: comparative effectiveness of a time-varying treatment with competing risks. JAMA Surg. 2013;148:127–36.

    PubMed Central  PubMed  Google Scholar 

  47. Pandey S, Vyas GN. Adverse effects of plasma transfusion. Transfusion. 2012;52(suppl 1):65S–79S.

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Torres LN, Sondeen JL, Ji L, et al. Evaluation of resuscitation fluids on endothelial glycocalyx, venular blood flow and coagulation function after hemorrhagic shock in rats. J Trauma Acute Care Surg. 2013;75(5):759–66.

    CAS  PubMed  Google Scholar 

  49. Pati S, Matijevic N, Doursout M-F, et al. Protective effects of Fresh Frozen Plasma on vascular endothelial permeability, coagulation and resuscitation after hemorrhagic shock are time dependent and diminish between days 0 and 5 after thaw. J Trauma. 2010;69:S55–63.

    PubMed Central  PubMed  Google Scholar 

  50. Haywood-Watson RJ, Holcomb JB, Gonzales EA, et al. Modulation of Syndecan-1 shedding after hemorrhagic shock and resuscitation. PLoS One. 2011;6(8):e23530.

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Maegele M, Schochl H, Cohen MJ. An update on the coagulopathy of trauma. Shock. 2014;41:S1, 21–5.

    Google Scholar 

  52. Weinbaum S, Tarbell JM, Damiano ER. The structure and function of the endothelial glycocalyx layer. Annu Rev Biomed Eng. 2007;9:121–67.

    CAS  PubMed  Google Scholar 

  53. Noel P, Cashen S, Patel B. Trauma-induced coagulopathy: from biology to therapy. Semin Hematol. 2013;50:259–69.

    PubMed  Google Scholar 

  54. Ostrowski SR, Johannson P. Endothelial glycocalyx degradation induces endogenous heparinization in patients with severe injury and early traumatic coagulopathy. J Trauma Acute Care Surg. 2012;73:60–6.

    CAS  PubMed  Google Scholar 

  55. Pierce A, Pittet J-F. Inflammatory response to trauma: implications for coagulation and resuscitation. Curr Opin Anesthesiol. 2014;27(2):246–52.

    CAS  Google Scholar 

  56. Johannson P, Stensballe J, Rasmussen LS, et al. A high admission syndecan-1 level, marker of endothelial glycocalyx degradation, is associated with inflammation, protein C depletion, fibrinolysis, and increased mortality in trauma patients. Ann Surg. 2011;254:194–200.

    Google Scholar 

  57. Johansson PI, Stensballe J, Ostrowski SR. Shock induced endotheliopathy (SHINE) in acute critical illness—a unifying pathophysiologic mechanism. Crit Care. 2017;21:25.

    PubMed Central  PubMed  Google Scholar 

  58. Khan S, Allard S, Weaver A, et al. A major haemorrhage protocol improves the delivery of blood component therapy and reduces waste in trauma massive transfusion. Injury. 2013;44(5):587–92.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucio Bucci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Cite this chapter

Bucci, L. (2019). Initial Resuscitation of Hemorrhagic Shock and Massive Transfusion Protocol. In: Aseni, P., De Carlis, L., Mazzola, A., Grande, A.M. (eds) Operative Techniques and Recent Advances in Acute Care and Emergency Surgery. Springer, Cham. https://doi.org/10.1007/978-3-319-95114-0_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95114-0_46

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95113-3

  • Online ISBN: 978-3-319-95114-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics