Skip to main content

Genebank Conservation of Germplasm Collected from Wild Species

  • Chapter
  • First Online:
Book cover North American Crop Wild Relatives, Volume 1

Abstract

Crop genebanks are tasked with maintaining genetic resources that support agriculture. They must keep a diverse array of samples alive for decades to centuries. Controlled conditions within the genebank are necessary to maintain quality and ensure consistency of the sample through time. Challenges for providing quality and consistency increase with samples that are mostly unstudied and highly heterogeneous and respond in unpredicted ways, as is the case for samples collected from the wild. The task of genebanking will be facilitated by better definitions of the “conservation target,” meaning the level of diversity that the sample is intended to represent. With that definition, collectors will have better knowledge of what and where to collect – and when to stop – and “fit-for-purpose” samples will be preserved. Major uncertainties persist about the life expectancy of the sample and whether genebanking imposes genetic shifts. Standards have been recommended by the international community to ensure lasting quality of samples despite a large number of unknowns. We believe some of these standards will be counter-productive or unobtainable for wild-collected samples, and we have offered alternatives that stress documentation so future genebank users can predict whether a sample will suit their needs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aubry C, Shoal R, Erickson VJ (2005) Grass cultivars: their origins, development and use on national forests and grasslands in the Pacific Northwest, U.S. Forest Service: 50

    Google Scholar 

  • Ballesteros D, Pence VC (2017) Survival and death of seeds during liquid nitrogen storage: a case study on seeds with short lifespans. CryoLetters 38:278–289

    PubMed  Google Scholar 

  • Brockway LH (1979) Science and colonial expansion: the role of the British Royal Botanic Gardens. Am Ethnol 6:449–465

    Article  Google Scholar 

  • Burton PJ, Burton CM (2002) Promoting genetic diversity in the production of large quantities of native plant seed. Ecol Restor 20:117–123

    Article  Google Scholar 

  • Charlesworth D, Charlesworth B, McVean GA (2001) Genome sequences and evolutionary biology, a two-way interaction. Trends Ecol Evol 16:235–242

    Article  CAS  Google Scholar 

  • Clerkx EJ, El-Lithy ME, Vierling E, Ruys GJ, Blankestijn-De Vries H, Groot SP, Vreugdenhil D, Koornneef M (2004) Analysis of natural allelic variation of Arabidopsis seed germination and seed longevity traits between the accessions Landsberg erecta and Shakdara, using a new recombinant inbred line population. Plant Physiol 135:432–443

    Article  CAS  Google Scholar 

  • Colville L, Bradley EL, Lloyd AS, Pritchard HW, Castle L, Kranner I (2012) Volatile fingerprints of seeds of four species indicate the involvement of alcoholic fermentation, lipid peroxidation, and Maillard reactions in seed deterioration during ageing and desiccation stress. J Exp Bot 63:6519–6530

    Article  CAS  Google Scholar 

  • Dafni A, Firmage D (2000) Pollen viability and longevity: practical, ecological and evolutionary implications. In: Pollen and pollination. Springer Vienna, Vienna pp 113–132

    Google Scholar 

  • Daws MI, Lydall E, Chmielarz P, Leprince O, Matthews S, Thanos CA, Pritchard HW (2004) Developmental heat sum influences recalcitrant seed traits in Aesculus hippocastanum across Europe. New Phytol 162:157–166

    Article  Google Scholar 

  • Ellis RH, Roberts EH (1980) Improved equations for the prediction of seed longevity. Ann Bot 45:13–30

    Article  Google Scholar 

  • Endresen DTF, Knüpffer H (2012) The Darwin Core extension for genebanks opens up new opportunities for sharing genebank datasets. Biodivers Inform 8:12–29

    Article  Google Scholar 

  • Engelmann F (2011) Use of biotechnologies for the conservation of plant biodiversity. In Vitro Cell Dev Biol Plant 47:5–16

    Article  Google Scholar 

  • Falk D, Richards CM, Montalvo A, Knapp E (2006) Population and ecological genetics in restoration ecology. In: Falk D, Palmer M, Zedler J (eds) Foundations of restoration biology. Island Press, Washington, DC, pp 14–41

    Google Scholar 

  • FAO (2001) International treaty on plant genetic resources for food and agriculture. Food and Agriculture Organisation of the United Nations. Available at: http://planttreaty.org

  • FAO (2014) Genebank standards for plant genetic resources for food and agriculture. Rev. ed, Rome

    Google Scholar 

  • Fleming MB, Richards CM, Walters C (2017) Decline in RNA integrity of dry-stored soybean seeds correlates with loss of germination potential. J Exp Bot 68:2219–2230

    Article  CAS  Google Scholar 

  • Franchi GG, Piotto B, Nepi M, Baskin CC, Baskin JM, Pacini E (2011) Pollen and seed desiccation tolerance in relation to degree of developmental arrest, dispersal, and survival. J Exp Bot 62:5267–5281

    Article  CAS  Google Scholar 

  • Franks SJ, Avise JC, Bradshaw WE, Conner JK, Etterson JR, Mazer SJ, Weis AE (2008) The resurrection initiative: storing ancestral genotypes to capture evolution in action. Bioscience 58:870–873

    Article  Google Scholar 

  • Gilligan DM, Frankham R (2003) Dynamics of genetic adaptation to captivity. Conserv Genet 4:189–197

    Article  Google Scholar 

  • Greene SL, Kisha TJ, Yu L-X, Parra-Quijano M (2014) Conserving plants in gene banks and nature: investigating complementarity with Trifolium thompsonii Morton. PLoS One 9.: art. no. e105145

    Google Scholar 

  • Guerrant EO Jr, Fiedler PL (2004) Accounting for sample decline during ex situ storage and reintroduction. In: Guerrant EO Jr, Havens K, Maunder M (eds) Ex situ plant conservation: supporting species survival in the wild. Island Press, Covelo, pp 365–385

    Google Scholar 

  • Guerrant EO Jr, Havens K, Maunder M (eds) (2004) Ex situ plant conservation: supporting species survival in the wild, vol 3. Island Press, Covelo

    Google Scholar 

  • Guerrant EO Jr, Havens K, Vitt P (2014) Sampling for effective ex situ plant conservation. Int J Plant Sci 175:11–20

    Article  Google Scholar 

  • Haidet M, Olwell P (2015) Seeds of success: a national seed banking program working to achieve long-term conservation goals. Nat Areas J 35:165–173

    Article  Google Scholar 

  • Harding K (2004) Genetic integrity of cryopreserved plant cells: a review. CryoLetters 25:3–22

    PubMed  Google Scholar 

  • Havens K, Guerrant EO Jr, Maunder M, Vitt P (2004) Guidelines for ex situ conservation collection management: minimizing risks. In: Guerrant EO Jr, Havens K, Maunder M (eds) Ex situ plant conservation: supporting species survival in the wild. Island Press, Covelo, pp 454–473

    Google Scholar 

  • Hay FR, Probert RJ (1995) Seed maturity and the effects of different drying conditions on desiccation tolerance and seed longevity in foxglove (Digitalis purpurea L.). Ann Bot 76:639–647

    Article  Google Scholar 

  • Hay FR, Probert RJ (2013) Advances in seed conservation of wild plant species: a review of recent research. Conserv Physiol 1. https://doi.org/10.1093/conphys/cot030

  • Hay FR, Mead A, Manger K, Wilson FJ (2003) One-step analysis of seed storage data and the longevity of Arabidopsis thaliana seeds. J Exp Bot 54:993–1011

    Article  CAS  Google Scholar 

  • Hoban S, Schlarbaum S (2014) Optimal sampling of seeds from plant populations for ex-situ conservation of genetic biodiversity, considering realistic population structure. Biol Conserv 177:90–99

    Article  Google Scholar 

  • Hoekstra FA (1995) Collecting pollen for genetic resources conservation. In: Guarino L, Rao VR, Reid R (eds). IPGRI/FAO/UNEP/IUCN Collecting plant genetic diversity: technical guidelines. CABI Publishing, Wallingford, pp 527–550

    Google Scholar 

  • Hokanson SC, Szewc-McFadden AK, Lamboy WF, McFerson JR (1998) Microsatellite (SSR) markers reveal genetic identities, genetic diversity and relationships in a Malus×domestica Borkh. core subset collection. Theor Appl Genet 97:671–683

    Google Scholar 

  • ISBER (International Society for Biological an Environmental Repositories) (2012) Best practices for repositories: collection, storage, retrieval, and distribution of biological materials for research. Biopreserv Biobank 10:79–161

    Article  Google Scholar 

  • Kahler AL, Kern AJ, Porter RA, Phillips RL (2014) Maintaining food value of wild rice (Zizania palustris L.) using comparative genomics. In: Genomics of plant genetic resources. Springer, Dordrecht, pp 233–248

    Chapter  Google Scholar 

  • Khoury CK, Greene S, Wiersema J, Maxted N, Jarvis A, Struik PC (2013) An inventory of crop wild relatives of the United States. Crop Sci 53:1496–1508

    Article  Google Scholar 

  • Khoury CK, Castañeda-Alvarez NP, Achicanoy HA, Sosa CC, Bernau V, Kassa MT, Norton SL, van der Maeseng LJG, Upadhyaya HD, Ramírez-Villegas J, Jarvis A, Struik PC, Jarvis A (2015) Crop wild relatives of pigeonpea [Cajanus cajan (L.) Millsp.]: distributions, ex situ conservation status, and potential genetic resources for abiotic stress tolerance. Biol Conserv 184:259–270

    Article  Google Scholar 

  • Kilian B, Graner A (2012) NGS technologies for analyzing germplasm diversity in genebanks. Brief Funct Genomics 11:38 elr046

    Article  CAS  Google Scholar 

  • Kochanek J, Steadman KJ, Probert RJ, Adkins SW (2009) Variation in seed longevity among different populations, species and genera found in collections from wild Australian plants. Aust J Bot 57:123–131

    Article  Google Scholar 

  • Lawrence MJ, Marshall DF, Davies P (1995) Genetics of genetic conservation. I. Sample size when collecting germplasm. Euphytica 84:89–99

    Article  Google Scholar 

  • Li D-Z, Pritchard HW (2009) The science and economics of ex situ plant conservation. Trends Plant Sci 14:614–621

    Article  CAS  Google Scholar 

  • Lockwood DR, Richards CM, Volk GM (2007a) Probabilistic models for collecting genetic diversity: comparisons, caveats, and limitations. Crop Sci 47:861–866

    Article  Google Scholar 

  • Lockwood DR, Richards CM, Volk GM (2007b) Wild plant sampling strategies: the roles of ecology and evolution. Plant Breed Rev 29:285–313

    Google Scholar 

  • Marshall DR, Brown AHD (1975) Optimum sampling strategies in genetic resources conservation. In: Frankel OH, Hawkes JG (eds) Crop genetic resources for today and tomorrow. Cambridge University Press, Cambridge, UK, pp 53–80

    Google Scholar 

  • Maschinski J, Haskins KE (2012) Plant reintroduction in a changing climate: promises and perils. Island Press, Washington, DC

    Book  Google Scholar 

  • Mazur P, Leibo SP, Seidel GE Jr (2008) Cryopreservation of the germplasm of animals used in biological and medical research: importance, impact, status, and future directions. Biol Reprod 78:2–12

    Article  CAS  Google Scholar 

  • Mead A, Gray D (1999) Prediction of seed longevity: a modification of the shape of the Ellis and Roberts seed survival curves. Seed Sci Res 9:63–73

    Article  Google Scholar 

  • Menard KP (2008) Dynamic mechanical analysis: a practical introduction. CRC press, Boca Raton

    Book  Google Scholar 

  • Meyer RS, DuVal AE, Jensen HR (2012) Patterns and processes in crop domestication: an historical review and quantitative analysis of 203 global food crops. New Phytol 196:29–48

    Article  Google Scholar 

  • Mira S, Hill LM, González-Benito ME, Ibáñez MA, Walters C (2016) Volatile emission in dry seeds as a way to probe chemical reactions during initial asymptomatic deterioration. J Exp Bot 67:1783–1793

    Article  CAS  Google Scholar 

  • Mondoni A, Orsenigo S, Donà M, Balestrazzi A, Probert RJ, Hay FR, Petraglia A, Abeli T (2014) Environmentally induced transgenerational changes in seed longevity: maternal and genetic influence. Ann Bot 113:1257–1263

    Article  CAS  Google Scholar 

  • Nagel M, Börner A (2010) The longevity of crop seeds stored under ambient conditions. Seed Sci Res 20:1–12

    Article  Google Scholar 

  • Nagel M, Rosenhauer M, Willner E, Snowdon RJ, Friedt W, Börner A (2011) Seed longevity in oilseed rape (Brassica napus L.)–genetic variation and QTL mapping. Plant Genet Resour 9:260–263

    Article  CAS  Google Scholar 

  • PCA (Plant Conservation Alliance) (2015) National Seed Strategy for Rehabilitation and Restoration 2015–2020. www.blm.gov/seedstrategy (visited 18 Feb 2017)

  • Pence VC (2011) Evaluating costs for the in vitro propagation and preservation of endangered plants. In Vitro Cell Dev Biol Plant 47:176–187

    Article  Google Scholar 

  • Pence VC (2013) Tissue cryopreservation for plant conservation: potential and challenges. Int J Plant Sci 175:40–45

    Article  Google Scholar 

  • Pence VC, Philpott M, Culley TM, Plair B, Yorke SR, Lindsey K, Vanhove A-C, Ballesteros D (2017) Survival and genetic stability of shoot tips of Hedeoma todsenii after long-term cryostorage. In Vitro Cell Dev Biol Plant 53:328–338

    Article  CAS  Google Scholar 

  • Probert RJ, Adams J, Coneybeer J, Crawford A, Hay F (2007) Seed quality for conservation is critically affected by pre-storage factors. Aust J Bot 55:326–335

    Article  Google Scholar 

  • Probert RJ, Daws MI, Hay FR (2009) Ecological correlates of ex situ seed longevity: a comparative study on 195 species. Ann Bot 104:57–69

    Article  Google Scholar 

  • RBG (Royal Botanic Gardens Kew) (2017) Seed Information Database (SID). Version 7.1. Available from: http://data.kew.org/sid/ (February 2017)

  • Richards CM, Reilley A, Touchell D, Antolin MF, Walters C (2004) Microsatellite primers for Texas wild rice (Zizania texana), and a preliminary test of the impact of cryogenic storage on allele frequency at these loci. Conserv Genet 5:853–859

    Article  CAS  Google Scholar 

  • Richards CM, Antolin MF, Reilley A, Poole J, Walters C (2007) Capturing genetic diversity of wild populations for ex situ conservation: Texas wild rice (Zizania texana) as a model. Genet Resour Crop Evol 54:837–848

    Article  Google Scholar 

  • Richards CM, Lockwood DR, Volk GM, Walters C (2010) Modeling demographics and genetic diversity in ex situ collections during seed storage and regeneration. Crop Sci 50:2440–2447

    Article  Google Scholar 

  • Righetti K, Vu JL, Pelletier S, Vu, BL, Glaab E, Lalanne D Pasha A, Patel RV, Provart NJ, Verdier J,. Leprince O Buitink J (2015) Inference of longevity-related genes from a robust coexpression network of seed maturation identifies regulators linking seed storability to biotic defense-related pathways. Plant Cell 27: 2692–2708

    CAS  PubMed  PubMed Central  Google Scholar 

  • SCBD (2010) Strategic plan for biodiversity 2011–2020. Secretariat of the convention on biological diversity. Available at: http://cbd.int/sp

  • SCBD (2014) Global strategy for plant conservation. Secretariat of the convention on biological diversity. Available at: http://cbd.int/gspc

  • Schoen DJ, Brown AHD (2001) The conservation of wild plant species in seed banks. Bioscience 51:960–966

    Article  Google Scholar 

  • Schwember AR, Bradford KJ (2010) Quantitative trait loci associated with longevity of lettuce seeds under conventional and controlled deterioration storage conditions. J Exp Bot 61:4423–4436

    Article  CAS  Google Scholar 

  • Soulé M (1991) Conservation: tactics for a constant crisis. Science 253:744–750

    Article  Google Scholar 

  • Tarquis AM, Bradford KJ (1992) Prehydration and priming treatments that advance germination also increase the rate of deterioration of lettuce seeds. J Exp Bot 43:307–317

    Article  Google Scholar 

  • Thormann I, Reeves P, Thumm S, Reilley A, Engels JMM, Biradar CM, Lohwasser U, Börner A, Pillen K, Richards CM (2016) Genotypic and phenotypic changes in wild barley (Hordeum vulgare subsp. spontaneum) during a period of climate change in Jordan. Genet Resour Crop Evol 64:1–18. https://doi.org/10.1007/s10722-016-0437-5

    Article  Google Scholar 

  • Towill LE, Forsline PL, Walters C, Waddell JW, Laufmann J (2004) Cryopreservation of Malus germplasm using a winter vegetative bud method: results from 1915 accessions. CryoLetters 25:323–334

    PubMed  Google Scholar 

  • Tweddle JC, Dickie JB, Baskin CC, Baskin JM (2003) Ecological aspects of seed desiccation sensitivity. J Ecol 91:294–304

    Article  Google Scholar 

  • Urban MC (2015) Accelerating extinction risk from climate change. Science 348:571–573

    Article  CAS  Google Scholar 

  • Van de Wouw M, Kik C, van Hintum T, van Treuren R, Visser B (2010) Genetic erosion in crops: concept, research results and challenges. Plant Genet Resour Charact Util 8(01):1–15

    Article  Google Scholar 

  • Volk G (2011) Collecting pollen for genetic resources conservation. In: Guarino L, Ramanatha Rao V, Goldberg E (eds) Collecting plant genetic diversity: technical guidelines—2011 update

    Google Scholar 

  • Volk GM, Walters C (2004) Preservation of genetic resources in the national plant germplasm clonal collections. Plant Breed Rev 23:291–344

    Google Scholar 

  • Volk GM, Richards CM, Reilley AA, Henk AD, Forsline PL, Aldwinckle HS (2005) Ex situ conservation of vegetatively propagated species: development of a seed-based core collection for Malus sieversii. J Am Soc Hortic Sci 130:203–210

    Google Scholar 

  • Volk GM, Waddell J, Bonnart R, Towill L, Ellis D, Luffman M (2008) High viability of dormant Malus buds after 10 years of storage in liquid nitrogen vapour. CryoLetters 29:89–94

    CAS  PubMed  Google Scholar 

  • Volk GM, Richards CM, Forsline PL (2009) A comprehensive approach toward conserving Malus germplasm. In international symposium on molecular markers in horticulture 859: 177–182

    Google Scholar 

  • Volk GM, Chao CT, Norelli J, Brown SK, Fazio G, Peace C, Mcferson J, Zhong G, Bretting P (2015) The vulnerability of US apple (Malus) genetic resources. Genet Resour Crop Evol 62:765–794

    Article  Google Scholar 

  • Volk GM, Henk AD, Forsline PL, Szewc-Mcfadden AK, Fazio G, Aldwinckle H, Richards CM (2016) Seeds capture the diversity of genetic resource collections of Malus sieversii maintained in an orchard. Genet Resour Crop Evol 64:1513. https://doi.org/10.1007/s10722-016-0450-8

    Article  Google Scholar 

  • Walters C (1998) Ultra-dry technology: perspective from the National Seed Storage Laboratory, USA. Seed Sci Res 8(suppl 1):11–14

    Google Scholar 

  • Walters C (2015a) Genebanking seeds from natural populations. Nat Areas J 35:98–105

    Article  Google Scholar 

  • Walters C (2015b) Orthodoxy, recalcitrance and in-between: describing variation in seed storage characteristics using threshold responses to water loss. Planta 242:397–406

    Article  CAS  Google Scholar 

  • Walters C, Hanner R (2006) Platforms for DNA banking. In: de Vicente MC, Andersson MS (eds) DNA banks: providing novel options for Genebanks. Bioversity International

    Google Scholar 

  • Walters C, Wheeler L, Stanwood PC (2004) Longevity of cryogenically stored seeds. Cryobiology 48:229–244

    Article  Google Scholar 

  • Walters C, Wheeler LM, Grotenhuis JM (2005) Longevity of seeds stored in a genebank: species characteristics. Seed Sci Res 15:1–20

    Article  CAS  Google Scholar 

  • Walters C, Volk GM, Richards CM (2008) Genebanks in the post-genomic age: emerging roles and anticipated uses. Biodiversity 9:68–71

    Article  Google Scholar 

  • Walters C, Ballesteros D, Vertucci VA (2010) Structural mechanics of seed deterioration: standing the test of time. Plant Sci 179:65–573

    Article  Google Scholar 

  • Walters C, Berjak P, Pammenter N, Kennedy K, Raven P (2013) Preservation of recalcitrant seeds. Science 339:915–916

    Article  CAS  Google Scholar 

  • Wesley-Smith J, Berjak P, Pammenter NW, Walters C (2014) Intracellular ice and cell survival in cryo-exposed embryonic axes of recalcitrant seeds of Acer saccharinum: an ultrastructural study of factors affecting cell and ice structures. Ann Bot 113:695–709

    Article  Google Scholar 

  • Wieczorek J, Bloom D, Guralnick R, Blums, Döring M, Giovanni R, Robertson T, Vieglais D (2012) Darwin Core: an evolving community-developed biodiversity data standard. PLoS One 7(1):e29715

    Article  CAS  Google Scholar 

  • Zheng GH, Jing XM, Tao K-L (1998) Ultradry seed storage cuts cost of gene bank. Nature 393:2

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina Walters .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Walters, C., Richards, C.M., Volk, G.M. (2018). Genebank Conservation of Germplasm Collected from Wild Species. In: Greene, S., Williams, K., Khoury, C., Kantar, M., Marek, L. (eds) North American Crop Wild Relatives, Volume 1. Springer, Cham. https://doi.org/10.1007/978-3-319-95101-0_10

Download citation

Publish with us

Policies and ethics