Skip to main content

Artificial Intelligence and Computer-Assisted Evaluation of Chest Pathology

  • Chapter
  • First Online:
Book cover Artificial Intelligence in Medical Imaging

Abstract

The use of computer-assisted diagnosis in chest pathologies has gradually made inroads into the clinical workflow of chest radiography and computed tomography. The introduction of novel machine learning tools and application of artificial intelligence will likely lead to more advanced applications, which will be better suited to what chest radiologists require to allow efficient and accurate reporting. The excitement around these software opportunities extends beyond the simple “diagnostic” utility but expands into quantifiable disease biomarkers, which will have impact on patients’ management, the selection of patients for clinical trials of new drugs and ultimately the impact of (new) treatments on long-term outcomes.

This chapter will offer insight into the use of computer-assisted systems in the main areas of lung nodules/lung cancer, pulmonary embolism and parenchymal and airways diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lodwick GW, Keats TE, Dorst JP. The coding of roentgen images for computer analysis as applied to lung cancer. Radiology. 1963;81:185–200.

    Article  CAS  PubMed  Google Scholar 

  2. Melendez J, Philipsen RHHM, Chanda-Kapata P, Sunkutu V, Kapata N, van Ginneken B. Automatic versus human reading of chest X-rays in the Zambia national tuberculosis prevalence study. Int J Tuberc Lung Dis. 2017;21:880–6.

    Article  CAS  PubMed  Google Scholar 

  3. Kao EF, Jaw TW, Li CW, Chou MC, Liu GC. Automated detection of endotracheal tubes in paediatric chest radiographs. Comput Methods Prog Biomed. 2015;118:1–10.

    Article  Google Scholar 

  4. Zaglam N, Jouvet P, Flechelles O, Emeriaud G, Cheriet F. Computer-aided diagnosis system for the acute respiratory distress syndrome from chest radiographs. Comp Biol Med. 2014;52:41–8.

    Article  Google Scholar 

  5. Zimmerman JJ, Akhtar SR, Caldwell E, Rubenfield GD. Incidence and outcomes of pediatric acute lung injury. Pediatrics. 2009;124:87–95.

    Article  PubMed  Google Scholar 

  6. Quekel LGBA, Kessels AGH, Goei R, van Engelshoven JMA. Miss rate of lung cancer on the chest radiograph in clinical practice. Chest. 1999;115:720–4.

    Article  CAS  PubMed  Google Scholar 

  7. Quekel LGBA, Goie R, Kessels AGH, van Engelshoven JMA. Detection of lung cancer on the chest radiograph: impact of previous films, clinical information, double reading, and dual reading. J Clin Epidemiol. 2001;54:1146–50.

    Article  CAS  PubMed  Google Scholar 

  8. MacMahon H, Li F, Engelmann R, Roberts R, Armato S. Dual energy subtraction and temporal subtraction chest radiography. J Thorac Imaging. 2008;23:77–85.

    Article  PubMed  Google Scholar 

  9. White CJ, Flukinger T, Jeudy J, Chen JJ. Detection system to detect missed lung cancer at chest radiography. Radiology. 2009;252:273–81.

    Article  PubMed  Google Scholar 

  10. Li F, Engelmann R, Pesce LL, Doi K, Metz CE, MacMahon H. Small lung cancers: improved detection by use of bone suppression imaging – comparison with dual-energy subtraction chest radiography. Radiology. 2011;261:937–49.

    Article  PubMed  Google Scholar 

  11. Kakeda S, Moriya J, Sato H, et al. Improved detection of lung nodules on chest radiographs using a commercial computer-aided diagnosis system. Am J Roentgenol. 2004;182:505–10.

    Article  Google Scholar 

  12. Bley TA, Baumann T, Saueressig U, et al. Comparison of radiologist and CAD performance in the detection of CT-confirmed subtle pulmonary nodules on digital chest radiographs. Invest Radiol. 2008;43:343–8.

    Article  PubMed  Google Scholar 

  13. Van Beek EJR, Mullan B, Thompson B. Evaluation of a real-time interactive pulmonary nodule analysis system on chest digital radiographic images. A prospective study. Acad Radiol. 2008;15:571–5.

    Article  PubMed  Google Scholar 

  14. The National Lung Screening Trial Research Team. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med. 2011;365:395–409.

    Article  PubMed Central  Google Scholar 

  15. Black WC, Gareen IF, Soneji SS, et al. Cost-effectiveness of CT screening in the National Lung Screening Trial. N Engl J Med. 2014;371:1793–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Aberle DR, DeMello S, Berg CD, et al. Results of the two incidence screenings in the National Lung Screening Trial. N Engl J Med. 2013;369:920–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Oudkerk M, Deveraj A, Vliegenthart R, et al. European position statement on lung cancer screening. Lancet Oncol. 2017;18:e754–66.

    Article  PubMed  Google Scholar 

  18. Heuvelmans MA, Oudkerk M, de Jong PA, Mali WP, Groen HJM, Vliegenthart R. The impact of radiologists’ expertise on screen result decisions in a CT lung cancer screening trial. Eur Radiol. 2015;25:792–9.

    Article  PubMed  Google Scholar 

  19. Nietert PJ, Ravenel JG, Taylor KK, Silvestri GA. Influence of nodule detection software on radiologists’ confidence in identifying pulmonary nodules with computed tomography. J Thorac Imaging. 2011;26:48–53.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Rubin GD, Lyo JK, Palk DS, et al. Pulmonary nodules on multi-detector row CT scans: performance comparison of radiologists and computer-aided detection. Radiology. 2005;234:274–83.

    Article  PubMed  Google Scholar 

  21. Das M, Muhlenbruch G, Mahnken AH, et al. Small pulmonary nodules: effect of two computer-aided detection systems on radiologist performance. Radiology. 2006;241:564–71.

    Article  PubMed  Google Scholar 

  22. Liang M, Tang W, Xu DM, et al. Low-dose CT screening for lung cancer: computer-aided detection of missed lung cancers. Radiology. 2016;281:279–88.

    Article  PubMed  Google Scholar 

  23. Rubin GD. Lung nodule and cancer detection in computed tomography screening. J Thorac Imaging. 2015;30:130–8.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Callister MEJ, Baldwin DR, Akram AR, et al. British Thoracic Society guidelines for the investigation and management of pulmonary nodules. Thorax. 2015;70(Suppl 2):ii1–ii54.

    Article  PubMed  Google Scholar 

  25. MacMahon H, Naidich DP, Goo JM, et al. Guidelines for management of incidental pulmonary nodules detected on CT imaging: from the Fleischner Society 2017. Radiology. 2017;284:228–43.

    Article  PubMed  Google Scholar 

  26. Bankier AA, MacMahon H, Goo JM, Rubin GD, Schaefer-Prokop CM, Naidich DP. Recommendations for measuring pulmonary nodules at CT: a statement from the Fleischner Society. Radiology. 2017;285:584–600.

    Article  PubMed  Google Scholar 

  27. Deveraj A, van Ginneken B, Nair A, Baldwin D. Use of volumetry for lung nodule management: theory and practice. Radiology. 2017;284:630–44.

    Article  Google Scholar 

  28. Lo SCB, Freeman MT, Gillis LB, White CS, Mun SK. Computer-aided detection of lung nodules on CT with a computerized pulmonary vessel suppressed function. Am J Roentgenol. 2018;210:1–9.

    Article  Google Scholar 

  29. Van Riel SJ, Ciompi F, Winkler Wille MM, Dirksen A, et al. Malignancy risk estimation of pulmonary nodules in screening CTs: comparison between a computer model and human observers. PLoS One. 2017;12:e0185032.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Wille MM, Dirksen A, Ashraf H, et al. Results of the randomized Danish lung cancer screening trial with focus on high-risk profiling. Am J Respir Crit Care Med. 2013;193:542–51.

    Article  CAS  Google Scholar 

  31. McWilliams A, Tammemagi MC, Mayo JR, et al. Probability of cancer in pulmonary nodules detected on first screening CT. N Engl J Med. 2013;369:910–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Snoeckx A, Reyntiens P, Desbuquoit D, et al. Evaluation of the solitary pulmonary nodule: size matters, but do not ignore the power of morphology. Insights Imaging. 2018;9:73–86.

    Article  PubMed  Google Scholar 

  33. https://www.kaggle.com/c/data-science-bowl-2017 . Accessed 16 July 2018.

  34. Lee G, Lee HY, Park H, et al. Radiomics and its emerging role in lung cancer research, imaging biomarkers and clinical management: state of the art. Eur J Radiol. 2017;86:297–307.

    Article  PubMed  Google Scholar 

  35. Aerts HJWL, Velasquez ER, Leijenaar RT, Parmar C, Grossmann P, Carvalho S, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun. 2014;5:4006.

    Article  CAS  PubMed  Google Scholar 

  36. Ko JP, Suh J, Ibidapo O, et al. Lung adenocarcinoma: correlation of quantitative CT findings with pathologic findings. Radiology. 2016;280:931–9.

    Article  PubMed  Google Scholar 

  37. Huang P, Park S, Yan R, et al. Lung cancer diagnosis with small pulmonary nodules: a matched case-control study. Radiology. 2018;286:286–95.

    Article  PubMed  Google Scholar 

  38. Liu Y, Wang H, Li Q, et al. Radiologic features of small pulmonary nodules and lung cancer risk in the National Lung Screening Trial: a nested case-control study. Radiology. 2018;286:298–306.

    Article  PubMed  Google Scholar 

  39. Horeweg N, van Rosmalen J, Heuvelmans MA, et al. Lung cancer probability in patients with CT-detected pulmonary nodules: a prespecified analysis of data from the NELSON trial of low-dose CT screening. Lancet Oncol. 2014;15:1332–41.

    Article  PubMed  Google Scholar 

  40. Konstantinides SV, Torbicki A, Agnelli G, et al. 2014 ESC guidelines on the diagnosis and management of acute pulmonary embolism. Eur Heart J. 2014;35:3033–80.

    Article  CAS  PubMed  Google Scholar 

  41. Hochhegger B, Alves GRT, Chaves M, et al. Interobserver agreement between radiologists and radiology residents and emergency physicians in the detection of PE using CTPA. Clin Imaging. 2014;38:445–7.

    Article  PubMed  Google Scholar 

  42. Schoepf UJ, Schneider AC, Das M, Wood SA, Cheema JI, Costello P. Pulmonary embolism: computer-aided detection at multidetector row spiral computed tomography. J Thorac Imaging. 2007;22:319–23.

    Article  PubMed  Google Scholar 

  43. Maizlin ZV, Vos PM, Godoy MB, Cooperberg PL. Computer-aided detection of pulmonary embolism on CT angiography. J Thorac Imaging. 2007;22:324–9.

    Article  PubMed  Google Scholar 

  44. Buhmann S, Herzog P, Liang J, et al. Clinical evaluation of a computer-aided diagnosis (CAD) prototype for the detection of pulmonary embolism. Acad Radiol. 2007;14:851–8.

    Article  Google Scholar 

  45. Engelke C, Schmidt S, Bakai A, Auer F, Marten K. Computer-assisted detection of pulmonary embolism: performance evaluation in consensus with experienced and inexperienced chest radiologists. Eur Radiol. 2008;18:298–307.

    Article  PubMed  Google Scholar 

  46. Blackmon KN, Florin C, Bogoni L, et al. Computer-aided detection of pulmonary embolism at CT pulmonary angiography: can it improve performance of inexperienced readers? Eur Radiol. 2011;21:1214–23.

    Article  PubMed  Google Scholar 

  47. Wittenberg R, Berger FH, Peters JH, et al. Acute pulmonary embolism: effect of a computer-assisted detection prototype on diagnosis – an observer study. Radiology. 2012;262:305–13.

    Article  PubMed  Google Scholar 

  48. Das M, Mühlenbruch G, Helm A, et al. Computer-aided detection of pulmonary embolism: influence on radiologists’ detection performance with respect to vessel segments. Eur Radiol. 2008;18:1350–5.

    Article  PubMed  Google Scholar 

  49. Kligerman S, Lahiji K, Galvin JR, Stokum C, White CS. Missed pulmonary embolism on CT angiography: assessment with pulmonary embolism – computer aided detection. Am J Roentegenol. 2013;202:65–73.

    Article  Google Scholar 

  50. Dewailly M, Remy-Jardin M, Duhamel A, et al. Computer-aided detection of acute pulmonary embolism with 64-slice multi-detector row computed tomography: impact of the scanning conditions and overall image quality in the detection of peripheral clots. J Comput Assist Tomogr. 2010;34:23–30.

    Article  PubMed  Google Scholar 

  51. Lee CW, Seo JB, Song JW, et al. Evaluation of computer-aided detection and dual energy software in detection of peripheral pulmonary embolism on dual-energy pulmonary CT angiography. Eur Radiol. 2011;21:54–62.

    Article  PubMed  Google Scholar 

  52. Lahiji K, Kligerman S, Jeudy J, White C. Improved accuracy of pulmonary embolism computer-aided detection using iterative reconstruction compared with filtered back projection. Am J Roentgenol. 2014;203:763–71.

    Article  Google Scholar 

  53. Kröger JR, Hickethier T, Pahn G, Gerhardt F, Maintz D, Bunck AC. Influence of spectral detector CT based monoenergetic images on the computer-aided detection of pulmonary artery embolism. Eur J Radiol. 2017;95:242–8.

    Article  PubMed  Google Scholar 

  54. Aviram G, Soikher E, Bendet A, et al. Prediction of mortality in pulmonary embolism based on left atrial volume measured on CT pulmonary angiography. Chest. 2016;149:667–75.

    Article  PubMed  Google Scholar 

  55. Li Y, Dai Y, Deng L, Guo Y. Computer-aided detection for the automated evaluation of pulmonary embolism. Technol Health Care. 2017;2015:S135–42.

    Article  Google Scholar 

  56. Rucco M, Sousa-Rodrigues D, Merelli E, et al. Neural hypernetwork approach for pulmonary embolism diagnosis. BMC Res Notes. 2015;8:617.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Uppaluri R, Mitsa T, Sonka M, Hoffman EA, McLennan G. Quantification of pulmonary emphysema from lung computed tomography images. Am J Respir Crit Care Med. 1997;156:248–54.

    Article  CAS  PubMed  Google Scholar 

  58. National Emphysema Treatment Trial Research Group. A randomized trial comparing lung volume reduction surgery with medical therapy for severe emphysema. N Engl J Med. 2003;348:2059–73.

    Article  Google Scholar 

  59. Regan EA, Hokanson JE, Murphy JR, et al. Genetic epidemiology of COPD (COPDGene) study design. COPD. 2010;7:32–43.

    Article  PubMed  Google Scholar 

  60. Wan ES, Hokanseon JE, Murphy JR, et al. Clinical and radiographic predictors of GOLD-unclassified smokers in the COPDGene study. Am J Respir Crit Care Med. 2011;184:57–63.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Couper D, LaVange LM, Han M, et al. Design of the subpopulations and intermediate outcomes in COPD study (SPIROMICS). Thorax. 2014;69:491–4.

    Article  PubMed  Google Scholar 

  62. Hoffman EA, Ahmed FS, Baumhauer H, et al. Variation in the percent of emphysema-like lung in a healthy, non-smoking multi-ethnic sample. The MESA lung study. Ann Am Thorac Soc. 2014;11:898–907.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Busacker A, Newell JD Jr, Keefe T, et al. A multivariate analysis of risk factors for the air-trapping asthmatic phenotype as measured by quantitative CT analysis. Chest. 2009;135:48–56.

    Article  PubMed  Google Scholar 

  64. Witt CA, Sheshadri A, Carlstrom L, et al. Longitudinal changes in airway remodelling and air trapping in severe asthma. Acad Radiol. 2014;21:986–93.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Martin SP, Gariani J, Hachulla AL, et al. Impact of iterative reconstructions on objective and subjective emphysema assessment with computed tomography: a prospective study. Eur Radiol. 2017;27:2950–6.

    Article  PubMed  Google Scholar 

  66. Rodriguez A, Ranallo FN, Judy PF, Fain SB. The effects of iterative reconstruction and kernel selection on quantitative computed tomography measures of lung density. Med Phys. 2017;44:2267–80.

    Article  CAS  PubMed  Google Scholar 

  67. Galban CJ, Han MK, Boes JL, et al. Computed tomography-based biomarker provides unique signature for diagnosis of COPD phenotypes and disease progression. Nat Med. 2012;18:1711–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kim HG, Tashkin DP, Clements PJ, et al. A computer-aided diagnosis system for quantitative scoring of extent of lung fibrosis in scleroderma patients. Clin Exp Rheumatol. 2010;28(Suppl 62):S26–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Xu Y, van Beek EJ, Hwanjo Y, Guo J, McLennan G, Hoffman EA. Computer-aided classification of interstitial lung diseases via MDCT: 3D adaptive multiple feature method (3D AMFM). Acad Radiol. 2006;13:969–78.

    Article  PubMed  Google Scholar 

  70. Martinez FJ, de Andrade JA, Anstrom KJ, King TE Jr, Raghu G, Idiopathic Pulmonary Fibrosis Clinical Research Network. Randomized trial of acetylcysteine in idiopathic pulmonary fibrosis. N Engl J Med. 2014;370:2093–101.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Salisbury ML, Lynch DA, van Beek EJR, et al. Idiopathic pulmonary fibrosis: the association between the adaptive multiple features method and fibrosis outcome. Am J Respir Crit Care Med. 2017;195:921–9.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Humphries SM, Yagihashi K, Huckleberry J, et al. Idiopathic pulmonary fibrosis: data-driven textural analysis of extent of fibrosis at baseline and 15-month follow-up. Radiology. 2017;285:270–8.

    Article  PubMed  Google Scholar 

  73. Jacob J, Bartholmai BJ, Rajagopalan S, et al. Automated quantitative computed tomography versus visual computed tomography scoring in idiopathic pulmonary fibrosis: validation against pulmonary function. J Thorac Imaging. 2016;31:304–11.

    Article  PubMed  Google Scholar 

  74. Jacob J, Bartholmai BJ, Rajagopalan S, et al. Serial automated quantitative CT analysis in idiopathic pulmonary fibrosis: functional correlations and comparison with changes in visual CT scores. Eur Radiol. 2018;28:1318–27.

    Article  PubMed  Google Scholar 

  75. Wu X, Kim GH, Barber D, et al. Computed tomographic biomarkers in idiopathic pulmonary fibrosis: the future of quantitative analysis. Am J Respir Crit Care Med. 2018; https://doi.org/10.1164/rccm.201803-0444PP. [Epub ahead of print]

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edwin J. R. van Beek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

van Beek, E.J.R., Murchison, J.T. (2019). Artificial Intelligence and Computer-Assisted Evaluation of Chest Pathology. In: Ranschaert, E., Morozov, S., Algra, P. (eds) Artificial Intelligence in Medical Imaging. Springer, Cham. https://doi.org/10.1007/978-3-319-94878-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94878-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94877-5

  • Online ISBN: 978-3-319-94878-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics