Skip to main content

The Subregular Unipotent Contribution to the Geometric Side of the Arthur Trace Formula for the Split Exceptional Group G 2

  • Conference paper
  • First Online:
Geometric Aspects of the Trace Formula (SSTF 2016)

Part of the book series: Simons Symposia ((SISY))

Included in the following conference series:

  • 687 Accesses

Abstract

In this paper, a zeta integral for the space of binary cubic forms is associated with the subregular unipotent contribution to the geometric side of the Arthur trace formula for the split exceptional group G 2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Arthur, A measure on the unipotent variety, Canad. J. Math. 37 (1985), 1237–1274.

    Article  MathSciNet  Google Scholar 

  2. F. van der Blij, T. A. Springer, The arithmetics of octaves and of the group G2, Nederl. Akad. Wetensch. Proc. Ser. A 62 = Indag. Math. 21 (1959), 406–418.

    Article  Google Scholar 

  3. P.-H. Chaudouard, Sur la contribution unipotente dans la formule des traces d’Arthur pour les groupes généraux linéaires, Israel J. Math. 218 (2017), 175–271.

    Article  MathSciNet  Google Scholar 

  4. P.-H. Chaudouard, Sur certaines contributions unipotentes dans la formule des traces d’Arthur, arXiv:1510.02783, to appear in Amer. J. Math.

    Google Scholar 

  5. P.-H. Chaudouard, G. Laumon, Sur le comptage des fibrés de Hitchin nilpotents, J. Inst. Math. Jussieu 15 (2016), 91–164.

    Article  MathSciNet  Google Scholar 

  6. A. M. Cohen, G. Nebe, W. Plesken, Maximal integral forms of the algebraic group G2 defined by finite subgroups, J. Number Theory 72 (1998), 282–308.

    Article  MathSciNet  Google Scholar 

  7. D. Collingwood, W. McGovern, Nilpotent orbits in semisimple Lie algebras, Van Nostrand Reinhold Mathematics Series, Van Nostrand Reinhold Co., New York, 1993.

    MATH  Google Scholar 

  8. S. DeBacker, D. Kazhdan, Stable distributions supported on the nilpotent cone for the group G 2, The unity of mathematics, 205–262, Progr. Math., 244, Birkhäuser Boston, Boston, MA, 2006.

    Google Scholar 

  9. B. Datskovsky, D. Wright, The adelic zeta function associated with the space of binary cubic forms II: Local theory, J. Reine Angew. Math. 367, 27–75.

    Google Scholar 

  10. T. Finis, E. Lapid, On the continuity of the geometric side of the trace formula, Acta Math. Vietnam 41 (2016), 425–455.

    Article  MathSciNet  Google Scholar 

  11. W.-T. Gan, B. Gross, G. Savin, Fourier coefficients of modular forms on G 2, Duke Math. J. 115 (2002), 105–169.

    Article  MathSciNet  Google Scholar 

  12. W.-T. Gan, N. Gurevich, Non-tempered Arthur packets of G 2, Automorphic representations, L-functions and applications: progress and prospects, 129–155, Ohio State Univ. Math. Res. Inst. Publ., 11, de Gruyter, Berlin, 2005.

    Google Scholar 

  13. W. Hoffmann, The nonsemisimple term in the trace formula for rank one lattices, J. Reine Angew. Math. 379 (1987), 1–21.

    MathSciNet  MATH  Google Scholar 

  14. W. Hoffmann, The trace formula and prehomogeneous vector spaces, Müller, Werner (ed.) et al., Families of automorphic forms and the trace formula. Proceedings of the Simons symposium, Puerto Rico, January 26–February 1, 2014. Simons Symposia, 175–215 (2016).

    Google Scholar 

  15. W. Hoffmann, S. Wakatsuki, On the geometric side of the Arthur trace formula for the symplectic group of rank 2, arXiv:1310.0541, to appear in Mem. Amer. Math. Soc.

    Google Scholar 

  16. H. Kim, S. Wakatsuki, T. Yamauchi, An equidistribution theorem for holomorphic Siegel modular forms for GSp4, arXiv:1604.02036, to appear in J. Inst. Math. Jussieu.

    Google Scholar 

  17. T. Kogiso, Simple calculation of the residues of the adelic zeta function associated with the space of binary cubic forms, J. Number Theory 51 (1995), 233–248.

    Article  MathSciNet  Google Scholar 

  18. J. Matz, Arthur’s trace formula for GL(2) and GL(3) and non-compactly supported test functions, Dissertation, Universität Düsseldorf.

    Google Scholar 

  19. J. Matz, Bounds for global coefficients in the fine geometric expansion of Arthur’s trace formula for GL(n), Israel J. Math. 205 (2015), 337–396.

    Article  MathSciNet  Google Scholar 

  20. J. Matz, Weyl’s law for Hecke operators on GL(n) over imaginary quadratic number fields, Amer. J. Math. 139 (2017), 57–145.

    Article  MathSciNet  Google Scholar 

  21. J. Matz, N. Templier, Sato-Tate equidistribution for families of Hecke-Maass forms on \({\mathrm {SL}}(n,\mathbb {R})/{\mathrm {SO}}(n)\), arXiv:1505.07285, 2015.

    Google Scholar 

  22. H. Saito, Explicit form of the zeta functions of prehomogeneous vector spaces, Math. Ann. 315 (1999), 587–615.

    Article  MathSciNet  Google Scholar 

  23. H. Saito, Convergence of the zeta functions of prehomogeneous vector spaces, Nagoya Math. J. 170 (2003), 1–31.

    Article  MathSciNet  Google Scholar 

  24. M. Sato, T. Shintani, On zeta functions associated with prehomogeneous vector spaces, Ann. of Math. (2) 100 (1974), 131–170.

    Article  MathSciNet  Google Scholar 

  25. T. Shintani, On Dirichlet series whose coefficients are class-numbers of integral binary cubic forms, J. Math. Soc. Japan 24 (1972), 132–188

    Article  MathSciNet  Google Scholar 

  26. T. A. Springer, F. D. Veldkamp, Octonions, Jordan algebras and exceptional groups, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2000.

    Book  Google Scholar 

  27. R. Steinberg, Lectures on Chevalley groups, Notes prepared by John Faulkner and Robert Wilson, Yale University, New Haven, Conn., 1968.

    MATH  Google Scholar 

  28. T. Taniguchi, Distributions of discriminants of cubic algebras, math.NT/0606109, 2006.

    Google Scholar 

  29. D. Wright, The adelic zeta function associated to the space of binary cubic forms part I: Global theory, Math. Ann. 270 (1985), 503–534.

    Article  MathSciNet  Google Scholar 

  30. A. Yukie, Shintani zeta functions, London Mathematical Society Lecture Note Series, 183, Cambridge University Press, Cambridge, 1993.

    Google Scholar 

Download references

Acknowledgements

The author “Werner Hoffmann” was partially supported by the Collaborative Research Center 701 of the DFG. The author “Satoshi Wakatsuki” was partially supported by JSPS Grant-in-Aid for Scientific Research (No. 26800006, 25247001, 15K04795).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Wakatsuki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Finis, T., Hoffmann, W., Wakatsuki, S. (2018). The Subregular Unipotent Contribution to the Geometric Side of the Arthur Trace Formula for the Split Exceptional Group G 2 . In: Müller, W., Shin, S., Templier, N. (eds) Geometric Aspects of the Trace Formula. SSTF 2016. Simons Symposia. Springer, Cham. https://doi.org/10.1007/978-3-319-94833-1_5

Download citation

Publish with us

Policies and ethics