Skip to main content

Weakly Consistent Regularisation Methods for Ill-Posed Problems

  • Chapter
  • First Online:
Numerical Methods for PDEs

Part of the book series: SEMA SIMAI Springer Series ((SEMA SIMAI,volume 15))

Abstract

This Chapter takes its origin in the lecture notes for a 9 h course at the Institut Henri Poincaré in September 2016. The course was divided in three parts. In the first part, which is not included herein, the aim was to first recall some basic aspects of stabilised finite element methods for convection-diffusion problems. We focus entirely on the second and third parts which were dedicated to ill-posed problems and their approximation using stabilised finite element methods. First we introduce the concept of conditional stability. Then we consider the elliptic Cauchy-problem and a data assimilation problem in a unified setting and show how stabilised finite element methods may be used to derive error estimates that are consistent with the stability properties of the problem and the approximation properties of the finite element space. Finally, we extend the result to a data assimilation problem subject to the heat equation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alessandrini, G., Rondi, L., Rosset, E., Vessella, S.: The stability for the Cauchy problem for elliptic equations. Inverse Prob. 25(12), 123004, 47 (2009). http://dx.doi.org/10.1088/0266-5611/25/12/123004

    Article  MathSciNet  Google Scholar 

  2. Andrieux, S., Baranger, T.N., Ben Abda, A.: Solving Cauchy problems by minimizing an energy-like functional. Inverse Prob. 22(1), 115–133 (2006). http://dx.doi.org/10.1088/0266-5611/22/1/007

    Article  MathSciNet  Google Scholar 

  3. Azaï ez, M., Ben Belgacem, F., El Fekih, H.: On Cauchy’s problem. II. Completion, regularization and approximation. Inverse Prob. 22(4), 1307–1336 (2006). http://dx.doi.org/10.1088/0266-5611/22/4/012

  4. Badra, M., Caubet, F., Dardé, J.: Stability estimates for Navier-Stokes equations and application to inverse problems. Discrete Contin. Dyn. Syst. Ser. B 21(8), 2379–2407 (2016). http://dx.doi.org/10.3934/dcdsb.2016052

    Article  MathSciNet  Google Scholar 

  5. Baumeister, J.: Stable Solution of Inverse Problems. Advanced Lectures in Mathematics. Friedr. Vieweg & Sohn, Braunschweig (1987). http://dx.doi.org/10.1007/978-3-322-83967-1

    Google Scholar 

  6. Ben Belgacem, F., Du, D.T., Jelassi, F.: Extended-domain-Lavrentiev’s regularization for the Cauchy problem. Inverse Prob. 27(4), 045005 (2011). http://dx.doi.org/10.1088/0266-5611/27/4/045005

    Article  MathSciNet  Google Scholar 

  7. Bourgeois, L.: A mixed formulation of quasi-reversibility to solve the Cauchy problem for Laplace’s equation. Inverse Prob. 21(3), 1087–1104 (2005). http://dx.doi.org/10.1088/0266-5611/21/3/018

    Article  MathSciNet  Google Scholar 

  8. Bourgeois, L., Dardé, J.: The “exterior approach” to solve the inverse obstacle problem for the Stokes system. Inverse Probl. Imaging 8(1), 23–51 (2014). http://dx.doi.org/10.3934/ipi.2014.8.23

    Article  MathSciNet  Google Scholar 

  9. Brenner, S.C.: Poincaré-Friedrichs inequalities for piecewise H 1 functions. SIAM J. Numer. Anal. 41(1), 306–324 (2003). http://dx.doi.org/10.1137/S0036142902401311

    Article  MathSciNet  Google Scholar 

  10. Brooks, A.N., Hughes, T.J.R.: Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 32(1–3), 199–259 (1982). http://dx.doi.org/10.1016/0045-7825(82)90071-8. FENOMECH ‘81, Part I (Stuttgart, 1981)

    Article  MathSciNet  Google Scholar 

  11. Burman, E.: Stabilized finite element methods for nonsymmetric, noncoercive, and ill-posed problems. Part I: Elliptic equations. SIAM J. Sci. Comput. 35(6), A2752–A2780 (2013). http://dx.doi.org/10.1137/130916862

    MATH  Google Scholar 

  12. Burman, E.: Error estimates for stabilized finite element methods applied to ill-posed problems. C. R. Math. Acad. Sci. Paris 352(7–8), 655–659 (2014). http://dx.doi.org/10.1016/j.crma.2014.06.008

    Article  MathSciNet  Google Scholar 

  13. Burman, E.: Stabilised finite element methods for ill-posed problems with conditional stability. In: Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations. Lecture Notes in Computational Science and Engineering, vol. 114, pp. 93–127. Springer, Cham (2016)

    Google Scholar 

  14. Burman, E.: The elliptic Cauchy problem revisited: control of boundary data in natural norms. C. R. Math. 355, 479–484 (2017). http://dx.doi.org/10.1016/j.crma.2017.02.014

    Article  MathSciNet  Google Scholar 

  15. Burman, E., Hansbo, P.: Edge stabilization for Galerkin approximations of convection-diffusion-reaction problems. Comput. Methods Appl. Mech. Eng. 193(15–16), 1437–1453 (2004). http://dx.doi.org/10.1016/j.cma.2003.12.032

    Article  MathSciNet  Google Scholar 

  16. Burman, E., Hansbo, P.: Stabilized nonconforming finite element methods for data assimilation in incompressible flows. Math. Comp. 87(311), 1029–1050 (2018).

    Article  MathSciNet  Google Scholar 

  17. Burman, E., Oksanen, L.: Data assimilation for the heat equation using stabilized finite element methods. Numer. Math. 139(3), 505–528 (2018).

    Article  MathSciNet  Google Scholar 

  18. Burman, E., Oksanen, L., Ish-Horowicz, J.: Fully discrete finite element data assimilation method for the heat equation. ESAIM: Math. Model. Numer. Anal. (2018, in press). https://doi.org/10.1051/m2an/2018030

  19. Burman, E., Hansbo, P., Larson, M.: Solving ill-posed control problems by stabilized finite element methods: an alternative to Tikhonov regularization. Inverse Problems 34(3), (2018).

    Article  MathSciNet  Google Scholar 

  20. Cheng, J., Yamamoto, M.: One new strategy for a priori choice of regularizing parameters in Tikhonov’s regularization. Inverse Prob. 16(4), L31 (2000). http://stacks.iop.org/0266-5611/16/i=4/a=101

    Article  MathSciNet  Google Scholar 

  21. Dardé, J., Hannukainen, A., Hyvönen, N.: An H div-based mixed quasi-reversibility method for solving elliptic Cauchy problems. SIAM J. Numer. Anal. 51(4), 2123–2148 (2013). http://dx.doi.org/10.1137/120895123

    Article  MathSciNet  Google Scholar 

  22. Di Pietro, D.A., Ern, A.: Mathematical aspects of discontinuous Galerkin methods. In: Mathématiques & Applications (Berlin) [Mathematics & Applications], vol. 69. Springer, Heidelberg (2012). http://dx.doi.org/10.1007/978-3-642-22980-0

  23. Èmanuilov, O.Y.: Controllability of parabolic equations. Math. Sb. 186(6), 109–132 (1995). http://dx.doi.org/10.1070/SM1995v186n06ABEH000047

    Article  MathSciNet  Google Scholar 

  24. Engl, H.W., Hanke, M., Neubauer, A.: Regularization of inverse problems. In: Mathematics and Its Applications, vol. 375. Kluwer Academic Publishers Group, Dordrecht (1996). http://dx.doi.org/10.1007/978-94-009-1740-8

  25. Ern, A., Guermond, J.L.: Theory and practice of finite elements. In: Applied Mathematical Sciences, vol. 159. Springer, New York (2004). http://dx.doi.org/10.1007/978-1-4757-4355-5

  26. Guermond, J.L.: Stabilization of Galerkin approximations of transport equations by subgrid modeling. M2AN Math. Model. Numer. Anal. 33(6), 1293–1316 (1999). http://dx.doi.org/10.1051/m2an:1999145

    Article  MathSciNet  Google Scholar 

  27. Johnson, C., Nävert, U., Pitkäranta, J.: Finite element methods for linear hyperbolic problems. Comput. Methods Appl. Mech. Eng. 45(1–3), 285–312 (1984). http://dx.doi.org/10.1016/0045-7825(84)90158-0

    Article  MathSciNet  Google Scholar 

  28. Kabanikhin, S.I.: Definitions and examples of inverse and ill-posed problems. J. Inverse Ill-Posed Probl. 16(4), 317–357 (2008). http://dx.doi.org/10.1515/JIIP.2008.019

    Article  MathSciNet  Google Scholar 

  29. Klibanov, M.V.: Carleman estimates for the regularization of ill-posed Cauchy problems. Appl. Numer. Math. 94, 46–74 (2015). http://dx.doi.org/10.1016/j.apnum.2015.02.003

    Article  MathSciNet  Google Scholar 

  30. Kohn, R.V., Vogelius, M.: Relaxation of a variational method for impedance computed tomography. Commun. Pure Appl. Math. 40(6), 745–777 (1987). http://dx.doi.org/10.1002/cpa.3160400605

    Article  MathSciNet  Google Scholar 

  31. Lattès, R., Lions, J.L.: Méthode de quasi-réversibilité et applications. Travaux et Recherches Mathématiques, No. 15. Dunod, Paris (1967)

    Google Scholar 

  32. Puel, J.P.: A nonstandard approach to a data assimilation problem and Tychonov regularization revisited. SIAM J. Control Optim. 48(2), 1089–1111 (2009). http://dx.doi.org/10.1137/060670961

    Article  MathSciNet  Google Scholar 

  33. Scott, L.R., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54(190), 483–493 (1990). http://dx.doi.org/10.2307/2008497

    Article  MathSciNet  Google Scholar 

  34. Tikhonov, A.N., Arsenin, V.Y.: Solutions of Ill-Posed Problems. V. H. Winston & Sons, Washington; Wiley, New York (1977)

    Google Scholar 

  35. Yamamoto, M.: Carleman estimates for parabolic equations and applications. Inverse Prob. 25(12), 123013 (2009). http://dx.doi.org/10.1088/0266-5611/25/12/123013

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Burman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Burman, E., Oksanen, L. (2018). Weakly Consistent Regularisation Methods for Ill-Posed Problems. In: Di Pietro, D., Ern, A., Formaggia, L. (eds) Numerical Methods for PDEs. SEMA SIMAI Springer Series, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-319-94676-4_7

Download citation

Publish with us

Policies and ethics