Skip to main content

An Introduction to Hybrid High-Order Methods

  • Chapter
  • First Online:
Book cover Numerical Methods for PDEs

Part of the book series: SEMA SIMAI Springer Series ((SEMA SIMAI,volume 15))

Abstract

This chapter provides an introduction to Hybrid High-Order (HHO) methods. These are new generation numerical methods for PDEs with several advantageous features: the support of arbitrary approximation orders on general polyhedral meshes, the reproduction at the discrete level of relevant continuous properties, and a reduced computational cost thanks to static condensation and compact stencil. After establishing the discrete setting, we introduce the basics of HHO methods using as a model problem the Poisson equation. We describe in detail the construction, and prove a priori convergence results for various norms of the error as well as a posteriori estimates for the energy norm. We then consider two applications: the discretization of the nonlinear p-Laplace equation and of scalar diffusion-advection-reaction problems. The former application is used to introduce compactness analysis techniques to study the convergence to minimal regularity solution. The latter is used to introduce the discretization of first-order operators and the weak enforcement of boundary conditions. Numerical examples accompany the exposition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aghili, J., Boyaval, S., Di Pietro, D.A.: Hybridization of mixed high-order methods on general meshes and application to the Stokes equations. Comput. Methods Appl. Math. 15(2), 111–134 (2015). https://doi.org/10.1515/cmam-2015-0004

    MathSciNet  MATH  Google Scholar 

  2. Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39(5), 1749–1779 (2002)

    MathSciNet  MATH  Google Scholar 

  3. Bassi, F., Botti, L., Colombo, A., Di Pietro, D.A., Tesini, P.: On the flexibility of agglomeration based physical space discontinuous Galerkin discretizations. J. Comput. Phys. 231(1), 45–65 (2012). https://doi.org/10.1016/j.jcp.2011.08.018

    MathSciNet  MATH  Google Scholar 

  4. Bebendorf, M.: A note on the Poincaré inequality for convex domains. Z. Anal. Anwend. 22(4), 751–756 (2003)

    MATH  MathSciNet  Google Scholar 

  5. Beirão da Veiga, L., Droniou, J., Manzini, G.: A unified approach to handle convection terms in Finite Volumes and Mimetic Discretization Methods for elliptic problems. IMA J. Numer. Anal. 31(4), 1357–1401 (2011)

    Google Scholar 

  6. Beirão da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L.D., Russo, A.: Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 199(23), 199–214 (2013)

    Google Scholar 

  7. Beirão da Veiga, L., Brezzi, F., Marini, L.D.: Virtual elements for linear elasticity problems. SIAM J. Numer. Anal. 2(51), 794–812 (2013)

    MathSciNet  MATH  Google Scholar 

  8. Boffi, D., Di Pietro, D.A.: Unified formulation and analysis of mixed and primal discontinuous skeletal methods on polytopal meshes. ESAIM: Math. Model Numer. Anal. 52(1), 1–28 (2018). https://doi.org/10.1051/m2an/2017036

    MathSciNet  MATH  Google Scholar 

  9. Boffi, D., Botti, M., Di Pietro, D.A.: A nonconforming high-order method for the Biot problem on general meshes. SIAM J. Sci. Comput. 38(3), A1508–A1537 (2016). https://doi.org/10.1137/15M1025505

    MathSciNet  MATH  Google Scholar 

  10. Bonelle, J., Ern, A.: Analysis of compatible discrete operator schemes for elliptic problems on polyhedral meshes. ESAIM: Math. Model. Numer. Anal. 48, 553–581 (2014)

    MathSciNet  MATH  Google Scholar 

  11. Botti, M., Di Pietro, D.A., Sochala, P.: A Hybrid High-Order method for nonlinear elasticity. SIAM J. Numer. Anal. 55(6), 2687–2717 (2017). https://doi.org/10.1137/16M1105943

    MathSciNet  MATH  Google Scholar 

  12. Brezzi, F., Lipnikov, K., Shashkov, M.: Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes. SIAM J. Numer. Anal. 43(5), 1872–1896 (2005)

    MathSciNet  MATH  Google Scholar 

  13. Castillo, P., Cockburn, B., Perugia, I., Schötzau, D.: An a priori error analysis of the local discontinuous Galerkin method for elliptic problems. SIAM J. Numer. Anal. 38, 1676–1706 (2000)

    MathSciNet  MATH  Google Scholar 

  14. Chave, F., Di Pietro, D.A., Marche, F., Pigeonneau, F.: A hybrid high-order method for the Cahn–Hilliard problem in mixed form. SIAM J. Numer. Anal. 54(3), 1873–1898 (2016). https://doi.org/10.1137/15M1041055

    MathSciNet  MATH  Google Scholar 

  15. Cicuttin, M., Di Pietro, D.A., Ern, A.: Implementation of Discontinuous Skeletal methods on arbitrary-dimensional, polytopal meshes using generic programming. J. Comput. Appl. Math. 344, 852–874 (2008). https://doi.org/10.1016/j.cam.2017.09.017.

    MathSciNet  MATH  Google Scholar 

  16. Cockburn, B., Fu, G.: Superconvergence by M-decompositions. Part III: construction of three-dimensional finite elements. ESAIM Math. Model. Numer. Anal. 51(1), 365–398 (2017). https://doi.org/10.1051/m2an/2016023

    MATH  Google Scholar 

  17. Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47(2), 1319–1365 (2009). http://dx.doi.org/10.1137/070706616

    MathSciNet  MATH  Google Scholar 

  18. Cockburn, B., Di Pietro, D.A., Ern, A.: Bridging the Hybrid High-Order and Hybridizable Discontinuous Galerkin methods. ESAIM: Math. Model. Numer. Anal. 50(3), 635–650 (2016). https://doi.org/10.1051/m2an/2015051

    MathSciNet  MATH  Google Scholar 

  19. Codecasa, L., Specogna, R., Trevisan, F.: A new set of basis functions for the discrete geometric approach. J. Comput. Phys. 19(299), 7401–7410 (2010)

    MathSciNet  MATH  Google Scholar 

  20. Dahlquist, G.: Convergence and stability in the numerical integration of ordinary differential equations. Math. Scand. 4, 33–53 (1956)

    MathSciNet  MATH  Google Scholar 

  21. Di Pietro, D.A.: Cell centered Galerkin methods for diffusive problems. ESAIM: Math. Model. Numer. Anal. 46(1), 111–144 (2012). https://doi.org/10.1051/m2an/2011016

    MathSciNet  MATH  Google Scholar 

  22. Di Pietro, D.A., Droniou, J.: A Hybrid High-Order method for Leray–Lions elliptic equations on general meshes. Math. Comput. 86(307), 2159–2191 (2017). https://doi.org/10.1090/mcom/3180

    MathSciNet  MATH  Google Scholar 

  23. Di Pietro, D.A., Droniou, J.: W s, p-approximation properties of elliptic projectors on polynomial spaces, with application to the error analysis of a Hybrid High-Order discretisation of Leray–Lions problems. Math. Models Methods Appl. Sci. 27(5), 879–908 (2017). https://doi.org/10.1142/S0218202517500191

    MathSciNet  MATH  Google Scholar 

  24. Di Pietro, D.A., Ern, A.: Discrete functional analysis tools for discontinuous Galerkin methods with application to the incompressible Navier-Stokes equations. Math. Comput. 79(271), 1303–1330 (2010). https://doi.org/10.1090/S0025-5718-10-02333-1

    MathSciNet  MATH  Google Scholar 

  25. Di Pietro, D.A., Ern, A.: Mathematical aspects of discontinuous Galerkin methods. In: Mathématiques & Applications, vol. 69. Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-22980-0

    MATH  Google Scholar 

  26. Di Pietro, D.A., Ern, A.: Equilibrated tractions for the Hybrid High-Order method. C. R. Acad. Sci. Paris Ser. I 353, 279–282 (2015). https://doi.org/10.1016/j.crma.2014.12.009

    MathSciNet  MATH  Google Scholar 

  27. Di Pietro, D.A., Ern, A.: A hybrid high-order locking-free method for linear elasticity on general meshes. Comput. Methods Appl. Mech. Eng. 283, 1–21 (2015). https://doi.org/10.1016/j.cma.2014.09.009

    MathSciNet  MATH  Google Scholar 

  28. Di Pietro, D.A., Ern, A.: Arbitrary-order mixed methods for heterogeneous anisotropic diffusion on general meshes. IMA J. Numer. Anal. 37(1), 40–63 (2016). https://doi.org/10.1093/imanum/drw003

    MathSciNet  MATH  Google Scholar 

  29. Di Pietro, D.A., Krell, S.: A Hybrid High-Order method for the steady incompressible Navier–Stokes problem. J. Sci. Comput. 74(3), 1677–1705 (2018). https://doi.org/10.1007/s10915-017-0512-x

    MathSciNet  MATH  Google Scholar 

  30. Di Pietro, D.A., Lemaire, S.: An extension of the Crouzeix–Raviart space to general meshes with application to quasi-incompressible linear elasticity and Stokes flow. Math. Comput. 84(291), 1–31 (2015). https://doi.org/10.1090/S0025-5718-2014-02861-5

    MathSciNet  MATH  Google Scholar 

  31. Di Pietro, D.A., Specogna, R.: An a posteriori-driven adaptive Mixed High-Order method with application to electrostatics. J. Comput. Phys. 326(1), 35–55 (2016). https://doi.org/10.1016/j.jcp.2016.08.041

    MathSciNet  MATH  Google Scholar 

  32. Di Pietro, D.A., Ern, A., Guermond, J.L.: Discontinuous Galerkin methods for anisotropic semidefinite diffusion with advection. SIAM J. Numer. Anal. 46(2), 805–831 (2008). https://doi.org/10.1137/060676106

    MathSciNet  MATH  Google Scholar 

  33. Di Pietro, D.A., Ern, A., Lemaire, S.: An arbitrary-order and compact-stencil discretization of diffusion on general meshes based on local reconstruction operators. Comput. Methods Appl. Math. 14(4), 461–472 (2014). https://doi.org/10.1515/cmam-2014-0018

    MathSciNet  MATH  Google Scholar 

  34. Di Pietro, D.A., Droniou, J., Ern, A.: A discontinuous-skeletal method for advection-diffusion-reaction on general meshes. SIAM J. Numer. Anal. 53(5), 2135–2157 (2015). https://doi.org/10.1137/140993971

    MathSciNet  MATH  Google Scholar 

  35. Di Pietro, D.A., Ern, A., Lemaire, S.: A review of Hybrid High-Order methods: formulations, computational aspects, comparison with other methods. In: Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations, pp. 205–236. Springer, Cham (2016)

    Google Scholar 

  36. Di Pietro, D.A., Ern, A., Linke, A., Schieweck, F.: A discontinuous skeletal method for the viscosity-dependent Stokes problem. Comput. Methods Appl. Mech. Eng. 306, 175–195 (2016). https://doi.org/10.1016/j.cma.2016.03.033

    MathSciNet  Google Scholar 

  37. Di Pietro, D.A., Droniou, J., Manzini, G.: Discontinuous Skeletal Gradient Discretisation methods on polytopal meshes. J. Comput. Phys. 355, 397–425 (2018). https://doi.org/10.1016/j.jcp.2017.11.018

    MathSciNet  MATH  Google Scholar 

  38. Droniou, J.: Finite volume schemes for diffusion equations: introduction to and review of modern methods. Math. Models Methods Appl. Sci. 24(8), 1575–1619 (2014). https://doi.org/10.1142/S0218202514400041

    MathSciNet  MATH  Google Scholar 

  39. Droniou, J., Eymard, R.: A mixed finite volume scheme for anisotropic diffusion problems on any grid. Numer. Math. 105, 35–71 (2006)

    MathSciNet  MATH  Google Scholar 

  40. Droniou, J., Eymard, R., Gallouët, T., Herbin, R.: A unified approach to mimetic finite difference, hybrid finite volume and mixed finite volume methods. Math. Models Methods Appl. Sci. 20(2), 1–31 (2010)

    MathSciNet  MATH  Google Scholar 

  41. Droniou, J., Eymard, R., Gallouet, T., Herbin, R.: Gradient schemes: a generic framework for the discretisation of linear, nonlinear and nonlocal elliptic and parabolic equations. Math. Models Methods Appl. Sci. 23(13), 2395–2432 (2013). https://doi.org/10.1142/S0218202513500358

    MathSciNet  MATH  Google Scholar 

  42. Droniou, J., Eymard, R., Gallouët, T., Guichard, C., Herbin, R.: The Gradient Discretisation Method: A Framework for the Discretisation and Numerical Analysis of Linear and Nonlinear Elliptic and Parabolic Problems. Mathématiques et Applications. Springer, Berlin (2017). http://hal.archives-ouvertes.fr/hal-01382358.

  43. Eymard, R., Gallouët, T., Herbin, R.: Finite Volume Methods, pp. 713–1020. North-Holland, Amsterdam (2000)

    Google Scholar 

  44. Eymard, R., Gallouët, T., Herbin, R.: Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes. SUSHI: a scheme using stabilization and hybrid interfaces. IMA J. Numer. Anal. 30(4), 1009–1043 (2010)

    MATH  Google Scholar 

  45. Fichera, G.: Asymptotic behaviour of the electric field and density of the electric charge in the neighbourhood of singular points of a conducting surface. Russ. Math. Surv. 30(3), 107 (1975). http://stacks.iop.org/0036-0279/30/i=3/a=R03

    MATH  Google Scholar 

  46. Grisvard, P.: Singularities in Boundary Value Problems. Masson, Paris (1992)

    MATH  Google Scholar 

  47. Herbin, R., Hubert, F.: Benchmark on discretization schemes for anisotropic diffusion problems on general grids. In: Eymard, R., Hérard, J.M. (eds.) Finite Volumes for Complex Applications V, pp. 659–692. Wiley, Hoboken (2008)

    MATH  Google Scholar 

  48. Karakashian, O.A., Pascal, F.: A posteriori error estimates for a discontinuous Galerkin approximation of second-order elliptic problems. SIAM J. Numer. Anal. 41(6), 2374–2399 (2003)

    MathSciNet  MATH  Google Scholar 

  49. Lax, P.D., Milgram, A.N.: Parabolic equations. In: Contributions to the Theory of Partial Differential Equations. Annals of Mathematics Studies, vol. 33, pp. 167–190. Princeton University Press, Princeton (1954)

    Google Scholar 

  50. Leray, J., Lions, J.L.: Quelques résultats de Višik sur les problèmes elliptiques non linéaires par les méthodes de Minty-Browder. Bull. Soc. Math. France 93, 97–107 (1965)

    MathSciNet  MATH  Google Scholar 

  51. Minty, G.J.: On a “monotonicity” method for the solution of non-linear equations in Banach spaces. Proc. Natl. Acad. Sci. U.S.A. 50, 1038–1041 (1963)

    MathSciNet  MATH  Google Scholar 

  52. Payne, L.E., Weinberger, H.F.: An optimal Poincaré inequality for convex domains. Arch. Ration. Mech. Anal. 5, 286–292 (1960)

    MATH  Google Scholar 

  53. Verfürth, R.: A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley-Teubner, Stuttgart (1996)

    MATH  Google Scholar 

  54. Vohralík, M., Wohlmuth, B.I.: Mixed finite element methods: implementation with one unknown per element, local flux expressions, positivity, polygonal meshes, and relations to other methods. Math. Models Methods Appl. Sci. 23(5), 803–838 (2013). https://doi.org/10.1142/S0218202512500613

    MathSciNet  MATH  Google Scholar 

  55. Whitney, H.: Geometric Integration Theory. Princeton University Press, Princeton (1957)

    MATH  Google Scholar 

Download references

Acknowledgements

This work was funded by Agence Nationale de la Recherche grant HHOMM (ref. ANR-15-CE40-0005-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Antonio Di Pietro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Di Pietro, D.A., Tittarelli, R. (2018). An Introduction to Hybrid High-Order Methods. In: Di Pietro, D., Ern, A., Formaggia, L. (eds) Numerical Methods for PDEs. SEMA SIMAI Springer Series, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-319-94676-4_4

Download citation

Publish with us

Policies and ethics