Skip to main content

Defective Boundary Conditions for PDEs with Applications in Haemodynamics

  • Chapter
  • First Online:
Numerical Methods for PDEs

Part of the book series: SEMA SIMAI Springer Series ((SEMA SIMAI,volume 15))

  • 1331 Accesses

Abstract

This works gives an overview of the mathematical treatment of state-of-the-art techniques for partial differential problems where boundary data are provided only in terms of averaged quantities. A condition normally indicated as “defective boundary condition”. We present and analyze several procedures by which this type of problems can be handled.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Asbury, C., Ruberti, J., Bluth, E., Peattie, R.: Experimental investigation of steady flow in rigid models of abdominal aortic aneurysms. Ann. Biomed. Eng. 23(1), 29–39 (1995)

    Article  Google Scholar 

  2. Babuŝka, I.: The finite element method with Lagrangian multipliers. Numer. Math. 20(3), 179–192 (1973)

    Article  MathSciNet  Google Scholar 

  3. Blanco, P., Feijóo, R.: A dimensionally-heterogeneous closed-loop model for the cardiovascular system and its applications. Med. Eng. Phys. 35(5), 652–667 (2013)

    Article  Google Scholar 

  4. Blanco, P., Pivello, M., Urquiza, S., Feijòo, R.: On the potentialities of 3d-1d coupled models in hemodynamics simulations. J. Biomech. 42, 919–930 (2009)

    Article  Google Scholar 

  5. Brezzi, F.: On the existence, uniqueness and approximation of saddle point problems arising from Lagrange multipliers. RAIRO Anal. Numer. 8, 129–151 (1974)

    MATH  Google Scholar 

  6. Campbell, I., Ries, J., Dhawan, S., Quyyumi, A., Taylor, W., Oshinski, J.: Effect of inlet velocity profiles on patient-specific computational fluid dynamics simulations of the carotid bifurcation. J. Biomech. Eng. 134(5), 051001 (2012)

    Article  Google Scholar 

  7. Conca, C., Pares, C., Pironneau, O., Thiriet, M.: Navier-Stokes equations with imposed pressure and velocity fluxes. Int. J. Numer. Methods Fluids 20(4), 267–287 (1995)

    Article  MathSciNet  Google Scholar 

  8. Engl, H., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Springer, Netherlands (1996)

    Book  Google Scholar 

  9. Ern, A., Guermond, J.: Theory and Practice of Finite Elements. Springer, Berlin (2004)

    Book  Google Scholar 

  10. Ervin, V., Lee, H.: Numerical approximation of a quasi-Newtonian stokes flow problem with defective boundary conditions. SIAM J. Numer. Anal. 45(5), 2120–2140 (2007)

    Article  MathSciNet  Google Scholar 

  11. Formaggia, L., Vergara, C.: Prescription of general defective boundary conditions in fluid-dynamics. Milan J. Math. 80(2), 333–350 (2012)

    Article  MathSciNet  Google Scholar 

  12. Formaggia, L., Gerbeau, J., Nobile, F., Quarteroni, A.: Numerical treatment of defective boundary conditions for the Navier-Stokes equation. SIAM J. Numer. Anal. 40(1), 376–401 (2002)

    Article  MathSciNet  Google Scholar 

  13. Formaggia, L., Veneziani, A., Vergara, C.: A new approach to numerical solution of defective boundary value problems in incompressible fluid dynamics. SIAM J. Numer. Anal. 46(6), 2769–2794 (2008)

    Article  MathSciNet  Google Scholar 

  14. Formaggia, L., Veneziani, A., Vergara, C.: Flow rate boundary problems for an incompressible fluid in deformable domains: formulations and solution methods. Comput. Methods Appl. Mech. Eng. 199(9–12), 677–688 (2009)

    MathSciNet  MATH  Google Scholar 

  15. Fortin, M., Guénette, R., Pierre, R.: Numerical analysis of the modified EVSS method. Comput. Methods Appl. Mech. Eng. 143, 79–95 (1997)

    Article  MathSciNet  Google Scholar 

  16. Fustinoni, C., Marengo, M., Zinna, S.: Integration of a lumped parameters code with a finite volume code: numerical analysis of an heat pipe. In: XXVII UIT Congress, p. UIT09-031 (2009)

    Google Scholar 

  17. Galvin, K., Lee, H.: Analysis and approximation of the cross model for quasi-Newtonian flows with defective boundary conditions. Appl. Math. Comput. 222, 244254 (2013)

    MathSciNet  MATH  Google Scholar 

  18. Galvin, K., Lee, H., Rebholz, L.: Approximation of viscoelastic flows with defective boundary conditions. J. Non-Newtonian Fluid Mech. 169–170, 104113 (2012)

    Google Scholar 

  19. Gunzburger, M.: Perspectives in Flow Control and Optimization. Advances in Design and Control. Society for Industrial and Applied Mathematics, Philadelphia (2003)

    MATH  Google Scholar 

  20. He, X., Ku, D. Jr., Moore, J.: Simple calculation of the velocity profiles for pulsatile flow in a blood vessel using mathematica. Ann. Biomed. Eng. 21, 45–49 (1993)

    Article  Google Scholar 

  21. Heywood, J., Rannacher, R., Turek, S.: Artificial boundaries and flux and pressure conditions for the incompressible Navier-Stokes equations. Int. J. Numer. Methods Fluids 22, 325–352 (1996)

    Article  MathSciNet  Google Scholar 

  22. Juntunen, M., Stenberg, R.: Nitsche’s method for general boundary conditions. Math. Comput. 78, 1353–1374 (2009)

    Article  MathSciNet  Google Scholar 

  23. Khanafer, K., Bull, J., Upchurch, G. Jr., Berguer, R.: Turbulence significantly increases pressure and fluid shear stress in an aortic aneurysm model under resting and exercise flow conditions. Ann. Vasc. Surg. 21(1), 67–74 (2007)

    Article  Google Scholar 

  24. Lee, H.: Optimal control for quasi-Newtonian flows with defective boundary conditions. Comput. Methods Appl. Mech. Eng. 200, 2498–2506 (2011)

    Article  MathSciNet  Google Scholar 

  25. Leiva, J., Blanco, P., Buscaglia, G.: Partitioned analysis for dimensionally-heterogeneous hydraulic networks. Multiscale Model. Simul. 9, 872–903 (2011)

    Article  MathSciNet  Google Scholar 

  26. Les, A., Shadden, S., Figueroa, C., Park, J., Tedesco, M., Herfkens, R., Dalman, R., Taylor, C.: Quantification of hemodynamics in abdominal aortic aneurysms during rest and exercise using magnetic resonance imaging and computational fluid dynamics. Ann. Biomed. Eng. 38(4), 1288–1313 (2010)

    Article  Google Scholar 

  27. Lions, J.: Optimal Control of Systems Governed by Partial Differential Equations. Springer, Berlin (1971)

    Book  Google Scholar 

  28. Moireau, P., Xiao, N., Astorino, M., Figueroa, C.A., Chapelle, D., Taylor, C.A., Gerbeau, J.: External tissue support and fluid–structure simulation in blood flows. Biomech. Model. Mechanobiol. 11(1–2), 1–18 (2012)

    Article  Google Scholar 

  29. Nicoud, F., Toda, H.B., Cabrit, O., Bose, S., Lee, J.: Using singular values to build a subgrid-scale model for large eddy simulations. Phys. Fluids 23(8), 085106 (2011)

    Article  Google Scholar 

  30. Nitsche, J.: Uber ein variationsprinzip zur lozung von dirichlet-problemen bei verwendung von teilraumen, die keinen randbedingungen unterworfen sind. Abh. Math. Semin. Univ. Hambg. 36, 9–15 (1970/1971)

    Article  Google Scholar 

  31. Nocedal, J., Wright, S.: Sequential Quadratic Programming. Springer, Berlin (2006)

    Google Scholar 

  32. Quarteroni, A., Tuveri, M., Veneziani, A.: Computational vascular fluid dynamics: problems, models and methods. Comput. Vis. Sci. 2, 163–197 (2000)

    Article  Google Scholar 

  33. Quarteroni, A., Veneziani, A., Vergara, C.: Geometric multiscale modeling of the cardiovascular system, between theory and practice. Comput. Methods Appl. Mech. Eng. 302, 193–252 (2016)

    Article  MathSciNet  Google Scholar 

  34. Quarteroni, A., Manzoni, A., Vergara, C.: The cardiovascular system: mathematical modeling, numerical algorithms, clinical applications. Acta Numer. 26(1), 365–590 (2017)

    Article  MathSciNet  Google Scholar 

  35. Redaelli, A., Boschetti, F., Inzoli, F.: The assignment of velocity profiles in finite elements simulations of pulsatile flow in arteries. Comput. Biol. Med. 27(3), 233–247 (1997)

    Article  Google Scholar 

  36. Tröel, F.: Optimal Control of Partial Differential Equations. Theory, Methods and Applications. American Mathematical Society, Providence (2010)

    Google Scholar 

  37. Veneziani, A., Vergara, C.: Flow rate defective boundary conditions in haemodynamics simulations. Int. J. Numer. Meth. Fluids 47, 803–816 (2005)

    Article  MathSciNet  Google Scholar 

  38. Veneziani, A., Vergara, C.: An approximate method for solving incompressible Navier-Stokes problems with flow rate conditions. Comput. Methods Appl. Mech. Eng. 196(9–12), 1685–1700 (2007)

    Article  MathSciNet  Google Scholar 

  39. Vergara, C.: Nitsche’s method for defective boundary value problems in incompressible fluid-dynamics. J. Sci. Comput. 46(1), 100–123 (2011)

    Article  MathSciNet  Google Scholar 

  40. Vergara, C., Le Van, D., Quadrio, M., Formaggia, L., Domanin, M.: Large eddy simulations of blood dynamics in abdominal aortic aneurysms. Med. Eng. Phys. 47, 38–46 (2017)

    Article  Google Scholar 

  41. Whitaker, S.: Introduction to Fluid Mechanics. R.E. Krieger, Malabar (1984)

    Google Scholar 

  42. Zunino, P.: Numerical approximation of incompressible flows with net flux defective boundary conditions by means of penalty technique. Comput. Methods Appl. Mech. Eng. 198(37–40), 3026–3038 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank B. Guerciotti and D. Le Van for their support in the numerical experiments, and dr M. Domanin for providing the radiological images. They also gratefully acknowledge the financial support of the Italian MIUR by the grant PRIN12, number 201289A4LX, “Mathematical and numerical models of the cardiovascular system, and their clinical applications”. CV has been partially supported also by the H2020-MSCA-ITN-2017, EU project 765374 “ROMSOC - Reduced Order Modelling, Simulation and Optimization of Coupled systems”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Formaggia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Formaggia, L., Vergara, C. (2018). Defective Boundary Conditions for PDEs with Applications in Haemodynamics. In: Di Pietro, D., Ern, A., Formaggia, L. (eds) Numerical Methods for PDEs. SEMA SIMAI Springer Series, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-319-94676-4_10

Download citation

Publish with us

Policies and ethics